大模型标注:你看不上的数据标注正在成为高薪工作

大模型的出现激发出了不少新兴岗位,也让越来越多岗位备受人关注。数据标注这个岗位就是其中之一。想了解更多有关数据标注、大模型标注的同学,或许可以看看这篇文章。

图片

2022年底,ChatGPT引爆大语言模型,全球科技巨头纷纷入局,后来各家不仅限于自然语言技术,更是将文生图、文生音频、文生视频、图生视频等多模态技术“玩”出了新高度,近期大模型生成的兵马俑,还跳起了“科目三”的热舞。

大模型的热潮为人工智能开启了新篇章,作为大模型数据能力链条上的重要一环,数据标注受到前所未有的关注,数据是人工智能的基础,是人工智能更是大模型源源不断的养分来源,数据标注这个环节做得如何,直接决定了大模型有多聪明。

OpenAI这家公司,在全球大模型领域是跑在最前面的,在数据标注上也有一套自己的方法论,他们的数据标注方式是先做出预训练模型,再用强化学习加上人工反馈来调优,也就是RLHF(Reinforcement Learning from Human Feedback)。

他们找了很多家数据公司来共同完成数据标注,自己还组建了一个由几十名哲学博士组成的质检团队,对标注好的数据进行检查,但不是以对错来评估,而是给每个问题选出多个匹配的结果,再经过多人多伦的结果排序,直至模型数据符合常人思维,甚至某些专业领域的结果要达到中等以上知识水平,OpenAI成立8年,花费10亿美元用于模型训练,可见其对数据的重视程度。

一、大模型标注的特点

\1. 非结构化

上一代数据标注工作,主要以“打点”和“画框”为主,就是让机器学习什么是“人脸”,什么是“障碍物”,需要严格按照客户给定的标注规范进行,标注要求也偏客观。现在的大模型标注更像是在做阅读理解,让模型学习应该给出什么样的内容,大模型生成的多个结果哪个更接近满分答案,标注要求偏主观,难以形成统一的标准。

标准从客观到主观,使得标注工作更难做了,这非常考验标注师的主观能动性以及解决问题的能力,而且标注师需要具备很广的知识面,这说明数据标注工作,不再是个结构化的简单工作,而是变成了需要逻辑思维的非结构化工作。

\2. 知识密集型

大模型背景下的标注工作主要分为两类:通识大模型标注、领域大模型标注。目前市面上的大模型产品多数是通识大模型,即便是通识大模型,标注工作也是非结构化的,需要标注师具备很广的知识面,且具备较强的自然语言能力,实现了百分百本科的百度智能云海口标注基地,承担的主要工作就是通识类的标注。

至于领域大模型标注,对学历、能力、专业度的要求则更高,目前大多数行业或企业,需要的都是具备领域知识的专业人才,他们要重点解决金融、医疗、科技等领域的专业问题,最终形成符合专业逻辑的高质量数据。比如,政务大模型中,用户通常会问很多“专精”的问题,例如“社保断缴5年怎么办?”这需要标注师读取大量的政府文件,并能从中找到准确答案。

\3. 学历要求高

当年,数据标注被称为AI领域的流水线工人,通常集中在东南亚、非洲或是中国的河南、山西、山东等人力资源丰富的地区。为了控制成本,标注公司的老板们会在县城租一块场地,摆上电脑,有订单了就在附近招人兼职来做,没单子就解散休息。

简单来说,这个工种有点类似马路边上的临时装修工。如今的标注师坐在窗明几净的写字楼,有自己的工位,很宽敞,上下班要打卡,看起来和互联网公司里的白领们差不多,事实上也是如此,就像百度在海口的大模型标注基地,本科比例已经达到了100%,甚至很多专业领域的标注人员都是硕士或博士学历,他们的身份不再是标注员,而是领域标注专家。

二、大模型标注的岗位情况

\1. 岗位要求现状

在北京,普通标注员的薪资水平在6-8k之间,和基础的文员岗位薪资差不多,而大模型标注的薪资却高得多,在招聘网站上看了一些大模型标注的岗位,薪资水平多数在10-15k之间,甚至某些专业领域的标注人员薪资水平接近两万,这些岗位可都是执行层的标注人员,并非管理岗或专家类岗位。

当然这些岗位的要求也比较高,学历要求基本都是本科起,某些还会要求一本或211/985院校,除了硬性的学历要求,对专业能力或综合能力要求也比较高,某些会要求专业领域经验,比如下图中的两个样例,一个是教育领域的,一个是财经领域的,或者某些会要求外语水平,这也是很容易理解,因为大模型是和世界接轨的,国内很多大模型产品也需要部署外语环境下的大模型。

图片

\2. 岗位发展建议

由此,给在做数据标注或考虑做数据标注的同学两条建议:第一,有机会一定要转型到大模型领域,如果没有机会就要想办法创造机会,总之这波大模型的趋势我们一定要抓住,因为这可能是我们普通标注员为数不多的发展机会了。第二,一定要从事有专业知识的标注工作,简单标注工作薪资水平低,关键是很容易被替代,所以要建立自己的专业壁垒,才能在变幻莫测的职场中,使自己立于不败之地。

三、大模型标注的发展前景

\1. 职业发展前景

数据标注这条流水线目前主要由标注师和质检员组成,完成标注后,直接交给算法工程师,他们会用数据对大模型做测试,看看哪些方面还有不足,再有针对性的做下一轮标注和调试。

未来,这条流水线上还会出现更多细分岗位,例如模型评估师(指导大模型调优方向)、指令工程师(研究与大模型交互更高效的方式)、视频音频标注师、专业领域标注师等,这些岗位都是现在标注人员的发展方向,不仅岗位有更细分、更专业的发展方向,而且岗位需求量也会不断增大,预计未来五年,数据标注相关专业人才缺口将达百万量级。

\2. 行业发展前景

目前数据标注市场主要有两类参与者,一类是第三方标注公司,另一类是头部科技公司自建数据标注团队。

此外还有一些中间商,对接公司需求和标注团队。传统的数据标注行业主要依靠渠道、人力等形成的低成本优势,在未来,数据需求方将更看重数据质量、场景多样性和可扩展性,这样才能让大模型发挥更大的作用。在大模型为主的“智能革命”浪潮下,国内基础数据服务业将达到百亿市场规模,成为智能时代的新宠儿。

如何学习大模型 AGI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AGI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉AGI大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要帮用户优化他们的技术简历,目标是在北京拿到25k-30k的月薪。用户提到的技术包括Java、JVM、Spring生态、MySQL、Redis、Linux、Nginx、RabbitMQ、Docker等。首先,我要考虑这个薪资水平对应的岗位要求,通常需要深入的技术能力和项目经验,能够展示出解决复杂问题和系统优化的能力。 用户提供的现有技术栈已经很全面,但可能需要更突出亮点和量化成果。比如,在Java和JVM部分,不仅要列出熟悉JVM内存模型,还要具体说明如何调优,比如通过调整垃圾回收器参数将GC时间减少多少。这样能体现实际应用能力。 Spring生态方面,可能需要强调微服务架构的设计经验,比如使用Spring Cloud Alibaba搭建的系统,处理了多少QPS,或者如何解决服务雪崩问题。这些具体的数字和案例会让简历更有说服力。 数据库部分,MySQL和Redis的优化经验是关键。比如索引优化、分库分表的具体案例,或者用Redis实现分布式锁、缓存穿透的解决方案。这些都需要具体说明带来的性能提升,比如响应时间降低多少,TPS提高多少。 中间件如RabbitMQ,应该提到如何设计消息可靠投递,如何解决消息堆积问题,可能结合Docker和Kubernetes进行容器化部署,这样展示出全栈的能力。 运维工具如Docker和Linux,需要展示自动化部署、监控的经验,例如通过编写Shell脚本优化部署流程,或者利用Prometheus和Grafana进行系统监控,这些都能体现运维能力。 项目经验部分,应该采用STAR法则,明确项目背景、个人职责、技术方案和成果。比如主导某个高并发系统的设计,使用Redis集群支撑每秒10万请求,这样的描述既有技术深度又有量化结果。 另外,参考用户提供的引用内容,他们可能已经使用过Docker部署RabbitMQ、Nacos等,这些经验可以整合到简历中,突出容器化部署和云原生技术的应用,比如结合Kubernetes进行微服务管理,提升系统的可扩展性和稳定性。 最后,要注意简历的结构和关键词匹配,确保通过HR的筛选。技术能力部分分点列出核心技能,项目经验按时间倒序排列,最近的项目放在前面。同时,使用行业标准术语,避免模糊描述,比如“精通”改为“深入掌握”更合适,避免给人夸大其词的感觉。 可能还需要考虑高薪岗位对架构设计、性能优化、高并发处理经验的要求,因此简历中要突出这些方面的项目经验和技术能力。比如设计过千万级用户量的系统,优化JVM参数提升吞吐量,或者通过分布式缓存降低数据库负载等。 总结下来,优化点包括:量化成果、突出技术深度、项目经验具体化、使用行业术语、结构清晰,以及结合容器化和云原生技术展示全栈能力。同时,确保简历中的技术关键词与招聘要求匹配,提高通过率。</think>### 技术简历优化指南(对标北京25k-30k岗位) #### 一、核心技术能力结构化呈现 1. **Java生态** - 深入掌握JVM内存模型、GC算法调优,具备$>5$万QPS系统的FullGC问题定位经验(如通过G1参数优化降低GC时间$>70\%$) - 熟悉Spring Cloud Alibaba微服务架构,主导设计过基于$Nacos+Sentinel+Seata$的分布式系统(注册中心配置管理TPS达$2000+/s$) 2. **数据库与中间件** - MySQL索引优化及分库分表实践:完成$10$亿级数据量的水平拆分,查询性能提升$>300\%$[^3] - Redis高可用架构设计:实现$99.99\%$可用性的Cluster集群,通过$Lua$脚本优化热点Key访问性能 3. **云原生与运维** - 精通Docker容器化部署,完成SpringBoot项目镜像构建效率提升$50\%$(多阶段构建+镜像瘦身)[^2] - 熟悉Kubernetes服务编排,设计过基于$Prometheus+Grafana$的监控体系 ```markdown # 技术亮点示例 - 架构设计:主导电商系统重构,采用DDD+微服务架构,支撑日订单量从5万到100万增长 - 性能优化:通过JVM调优(ZGC启用+堆外内存控制)降低高并发场景延迟40% - 故障处理:快速定位Redis集群脑裂问题,设计哨兵+keepalived双保险方案 ``` #### 二、项目经验强化策略 采用`STAR`法则改造项目描述: ```markdown **供应链金融平台(2022.03-2023.06)** - Situation:原有系统处理10万级订单时出现数据库连接池耗尽 - Task:主导架构升级与性能优化 - Action: * 采用ShardingSphere实现分库分表(16分片) * 引入RabbitMQ削峰填谷(日均处理50万消息) * 设计Redis+Lua分布式锁控制库存 - Result:系统吞吐量从500TPS提升至3500TPS,TP99降低至200ms ``` #### 三、高价值加分项 1. **技术深度证明** - 在Spring源码层面解决过循环依赖问题(Bean生命周期控制) - 设计过定制化ClassLoader实现热部署 - 对Redis6.0多线程模型有源码级研究 2. **架构设计能力** - 绘制系统架构图时标注关键指标: $$ \begin{cases} \text{单节点QPS} \geq 5000 \\ \text{服务可用性} \geq 99.95\% \\ \text{数据一致性误差} < 0.1\% \end{cases} $$ 3. **运维保障体系** - ELK日志分析平台建设 - 基于Jenkins的CI/CD流水线设计 - 混沌工程实践(模拟网络分区、节点故障) #### 四、简历框架建议 ```markdown ## 技术优势 - 7年Java架构经验,3个千万级用户项目主导经历 - 专利:分布式事务一致性解决方案(专利号CNXXXXXX) ## 项目经历(倒序排列) [采用上述STAR格式] ## 开源贡献 - 贡献ShardingSphere中文文档优化 - 自研JVM监控工具Star 200+ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值