一、应用平台概述
基于大模型的应用平台是连接用户需求与模型能力的桥梁,旨在通过集成化的开发环境和工具链支持快速构建AI应用。以下是主要的应用平台类型及其特点:
通用AI平台
- 代表:Grok(xAI)、Claude(Anthropic)、ChatGPT(OpenAI)
- 特点:提供对话、文本生成、多模态交互等通用功能,支持Web、移动端和API访问。
- 优势:易于上手,适合快速原型开发,覆盖广泛场景(如客服、内容创作)。
- 局限:通用性强但领域深度有限,需额外微调或集成以适配特定行业。
开发者工具平台
- 代表:Cursor、Windsurf、VS Code(集成AI插件)
- 特点:专注于编程辅助,支持代码补全、调试、文档生成,集成MCP等协议。
- 优势:提升开发效率,特别适合软件开发和数据科学场景。
- 局限:对非开发者用户吸引力有限,依赖外部工具生态。
企业级平台
- 代表:Apollo、Block、Sourcegraph 、Dify
- 特点:面向企业定制化需求,支持内部数据集成、知识库查询、自动化工作流。
- 优势:高安全性和合规性,适配复杂业务场景(如CRM、ERP)。
- 局限:部署成本高,需专业团队维护。
多模态平台
- 代表:Blender-MCP、Stable Diffusion集成平台
- 特点:支持文本、图像、语音等多模态输入输出,适合创意设计、游戏开发等。
- 优势:扩展了AI应用边界,增强用户交互体验。
- 局限:技术复杂度高,资源需求大。
二、大模型相关协议
协议是大模型与外部系统交互的关键,解决了传统API集成复杂性和碎片化的问题。以下是对MCP和A2A等协议的详细总结:
MCP(Model Context Protocol)
- 概述:由Anthropic于2024年11月推出,MCP是一个开源协议,旨在标准化大模型与外部数据源和工具的交互,类似“AI的USB-C”。
架构:
-
MCP主机
:用户交互的AI应用(如Claude Desktop)。
-
MCP客户端
:负责与服务器通信,翻译主机需求。
-
MCP服务器
:提供工具、资源和提示模板(如GitHub、PostgreSQL)。
-
传输层
:支持STDIO(本地)和HTTP+SSE(远程),基于JSON-RPC 2.0。
核心功能:
-
工具调用
:模型可执行API请求、数据库查询等。
-
资源访问
:统一访问文件、数据库等只读数据。
-
提示模板
:提供标准化的交互模板。
优势:
- 解决“M×N”集成问题,降低开发复杂度(从M×N到M+N)。
- 支持动态工具发现和实时双向通信。
- 安全性高,通过隔离凭证和用户审批机制保护数据。
应用案例:
- 开发者工具:Windsurf通过MCP查询数据库,提升IDE智能性。
- 多模态:Blender-MCP支持通过提示生成3D场景。
- 企业集成:Block利用MCP连接内部系统,优化工作流。
挑战:
- 安全风险:本地服务器可能泄露凭证,需加强沙箱机制。
- 扩展性:多租户架构和远程服务器支持仍需完善。
- 学习曲线:开发者需熟悉协议规范。
A2A(Agent2Agent Protocol)
- 概述:由Google于2025年4月推出,A2A是一个开源协议,专注于多代理间的协作和通信,得到Salesforce、Accenture等50+科技公司的支持。
架构:
-
任务对象
:跟踪任务生命周期,包含请求详情。
-
工件(Artifacts)
:结构化任务输出,确保一致性。
-
传输层
:基于HTTP、SSE、JSON-RPC,支持推送通知。
核心功能:
- 实现跨平台代理协作,即使代理不共享工具或上下文。
- 支持复杂多代理系统,适合企业级任务流水线。
- 提供状态上下文保存,增强长任务处理能力。
优势:
- 促进代理间自然、非结构化交互,类似人类协作。
- 简化多代理系统开发,降低集成成本。
- 开源生态强大,得到广泛行业支持。
应用案例:
- 企业自动化:代理协作完成招聘流程(如候选筛选、面试调度)。
- 开发工具:结合ADK(Agent Development Kit),快速构建协作代理。
挑战:
- 新兴协议,生态成熟度低于MCP。
- 复杂任务的协调机制需进一步优化。
- 与MCP的竞争可能导致开发者选择困惑。
其他相关协议
- ACP(Agent Connect Protocol):由AGNTCY推出,专注于多代理协作,类似A2A但更强调REST接口和状态上下文。适合不受控代理系统。
- OpenAPI/Function Calling:传统工具调用方式,MCP和A2A是对其的标准化升级,但仍广泛用于单一模型场景。
- LSP(Language Server Protocol):MCP的灵感来源,用于IDE语言支持,证明了标准化协议的可行性。
三、协议与平台的结合
MCP在平台中的应用:
- Cursor、Windsurf等开发者平台通过MCP集成数据库、GitHub等工具,提升代码生成和调试能力。
- 企业平台(如Block)利用MCP连接内部数据源,实现知识库查询和流程自动化。
- 多模态平台(如Blender-MCP)通过MCP实现AI驱动的3D建模和场景生成。
A2A在平台中的潜力:
- A2A适合多代理协作平台,如Teneo.ai的自动化系统,代理可分工完成复杂任务(如招聘、客服)。
- 与MCP结合使用:MCP为单个代理提供上下文,A2A实现代理间通信,形成完整的协作生态。
生态发展趋势:
- MCP已获得广泛采用,拥有250+社区服务器,覆盖GitHub、Slack、Google Drive等。
- A2A凭借Google支持和多公司协作,生态快速扩展,适合企业级多代理系统。
- 未来可能出现协议融合或统一标准,类似HTTP对Web的影响。
四、总结
基于大模型的应用平台通过通用AI、开发者工具、企业级和多模态平台,满足了多样化的用户需求。MCP和A2A作为新兴协议,分别解决了模型与工具集成(MCP)和代理间协作(A2A)的痛点,显著降低了开发复杂性并推动了AI应用的互联互通。MCP以其标准化和广泛生态在开发者工具和企业集成中占据优势,而A2A凭借多代理协作能力在企业自动化领域展现潜力。未来,平台与协议的深度结合将进一步打破数据孤岛,构建更智能、协作的AI生态,开发者需关注协议的演进和生态扩展以保持竞争力。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!