数学分析复习:初等函数的构造

本文介绍了指数函数的定义、性质,如它是群同态且满足e^(x+y)=e^x*e^y,以及三角函数(正弦、余弦)的定义和Euler公式。文章还提到了三角函数的一些基本性质,如模长限制和常见的公式。
摘要由CSDN通过智能技术生成

本篇文章适合个人复习翻阅,不建议新手入门使用

指数函数

定义和性质

定义:(指数函数)
e x p : R → R , x ↦ e x p ( x ) = e x = ∑ k = 0 ∞ x k k ! exp:\mathbb{R}\to\mathbb{R},x\mapsto exp(x)=e^x=\sum\limits_{k=0}^{\infty}\frac{x^k}{k!} exp:RR,xexp(x)=ex=k=0k!xk注:需验证良定义性:即每一点均收敛(只需将阶乘放缩为幂函数)

性质

  • 指数函数是一个群同态:即保持 ( R , + ) (\mathbb{R},+) (R,+) ( R > 0 , ⋅ ) (\mathbb{R}_{>0},\cdot) (R>0,) 的运算 e x + y = e x ⋅ e y e^{x+y}=e^x\cdot e^y ex+y=exey

证明
e x ⋅ e y = ( ∑ k = 0 ∞ x k k ! ) ( ∑ k = 0 ∞ y k k ! ) = ∑ k = 0 ∞ ∑ i + j = k x i i ! x j j ! = ∑ k = 0 ∞ 1 k ! ∑ i + j = k k ! i ! j ! x i ⋅ y j = ∑ k = 0 ∞ 1 k ! ( x + y ) k = e x + y \begin{split} e^x\cdot e^y&=(\sum\limits_{k=0}^{\infty}\frac{x^k}{k!})(\sum\limits_{k=0}^{\infty}\frac{y^k}{k!})\\ &=\sum\limits_{k=0}^{\infty}\sum\limits_{i+j=k}\frac{x^i}{i!}\frac{x^j}{j!}\\ &=\sum\limits_{k=0}^{\infty}\frac{1}{k!}\sum\limits_{i+j=k}\frac{k!}{i!j!}x^i\cdot y^j\\ &=\sum\limits_{k=0}^{\infty}\frac{1}{k!}(x+y)^k=e^{x+y} \end{split} exey=(k=0k!xk)(k=0k!yk)=k=0i+j=ki!xij!xj=k=0k!1i+j=ki!j!k!xiyj=k=0k!1(x+y)k=ex+y

三角函数

定义:(正弦函数、余弦函数)
cos ⁡ z = e i z + e − i z 2 , sin ⁡ z = e i z − e − i z 2 i \cos{z}=\frac{e^{iz}+e^{-iz}}{2},\sin{z}=\frac{e^{iz}-e^{-iz}}{2i} cosz=2eiz+eiz,sinz=2ieizeiz由此导出 Euler 公式
e i z = cos ⁡ z + i sin ⁡ z e^{iz}=\cos{z}+i\sin{z} eiz=cosz+isinz注:正切、余切等函数仍和中学的定义一样,通过正余弦的商定义

性质

  • ( cos ⁡ z ) 2 + ( sin ⁡ z ) 2 = 1 (\cos{z})^2+(\sin{z})^2=1 (cosz)2+(sinz)2=1
  • ∣ sin ⁡ z ∣ ≤ 1 , ∣ cos ⁡ z ∣ ≤ 1 |\sin{z}|\leq 1,|\cos{z}|\leq 1 sinz1,cosz1
  • 和差化积公式、和角倍角公式等三角公式

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 15
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值