Python中逻辑回归阈值调整策略详解

目录

一、 逻辑回归简介

二、阈值的作用

三、修改阈值的方法

1、 利用predict方法

2 、通过ROC曲线选择最优阈值


一、 逻辑回归简介

        逻辑回归是一种广泛用于二分类问题的机器学习算法,它通过将线性回归的输出映射到0到1之间的概率值,并根据设定的阈值来进行分类预测。

二、阈值的作用

        在逻辑回归中,预测值大于阈值(通常为0.5)的样本被分类为正类(1),小于等于阈值的样本被分类为负类(0)。但是,有时候0.5并不是最优的阈值,因此需要调整阈值来优化模型的分类表现。

三、修改阈值的方法

1、 利用predict方法

        在Python的机器学习库中(如scikit-learn),逻辑回归模型通常提供了predict方法来进行预测。默认情况下,predict方法使用0.5作为阈值进行分类。我们可以通过自定义阈值来调整预测结果。

import numpy as np
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值