目录
一、 逻辑回归简介
逻辑回归是一种广泛用于二分类问题的机器学习算法,它通过将线性回归的输出映射到0到1之间的概率值,并根据设定的阈值来进行分类预测。
二、阈值的作用
在逻辑回归中,预测值大于阈值(通常为0.5)的样本被分类为正类(1),小于等于阈值的样本被分类为负类(0)。但是,有时候0.5并不是最优的阈值,因此需要调整阈值来优化模型的分类表现。
三、修改阈值的方法
1、 利用predict方法
在Python的机器学习库中(如scikit-learn),逻辑回归模型通常提供了predict方法来进行预测。默认情况下,predict方法使用0.5作为阈值进行分类。我们可以通过自定义阈值来调整预测结果。
import numpy as np
from sklearn