在1万块H100 GPU上训练模型涉及到复杂的硬件架构和并行化策略

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在使用1万块H100显卡时,目标是尽可能将网络规模和批处理大小最大化。为此,涉及多个并行化策略:

  1. 批处理并行化(数据并行):将不同批次的数据分配到多个GPU。
  2. 层内并行化:将一个神经网络层拆分到多个GPU上。
  3. 层间并行化:将不同的层分配到不同的GPU上,比如第1到N层在GPU1上,第N+1到N+10层在GPU2上。

通过不断优化并行化,确保所有GPU的高效利用,最大化计算资源。

Checkpointing与计算/记忆权衡

为了执行反向传播,需要在前向计算时保存一些中间变量(如save_for_backward)。但当网络足够大时,可以选择释放这些变量,腾出内存以容纳更大的批处理量,并在需要时重新计算。类似于FSDP的技巧,可以将权重分片保存在不同GPU上,节省内存,等需要计算时再从其他GPU获取这些权重。

GPU间的快速通信

在多个GPU之间传输数据时,尽量让通信与计算并行进行。例如,当第N层完成反向传播时,第N-1层的反向传播仍在计算中,这时可以让第N层的GPU们进行梯度的all-reduce操作,从而减少等待时间。

网络拓扑结构的发现与利用

在大规模同步SGD训练中,必须快速传输大量的梯度和优化器状态。这通常涉及多个网络节点,并需要考虑复杂的网络拓扑结构。通过树状的all-reduce算法,可以将通信复杂度降低至log(n),同时尽量减少光纤连接节点间的通信延迟。

NCCL库可以智能发现网络拓扑并优化通信操作,比如all-reduce或scatter/gather。同时,网络设备(如交换机和NIC)的路由算法也需要优化,以实现负载均衡。此外,交换机的HBM内存在处理大规模通信时也非常关键,因为数据包排队时需要足够的缓存空间。

故障恢复

在拥有1万块GPU的环境中,硬件和软件故障几乎是常态。GPU、NIC、网络线缆等可能随时出问题。有些故障可以快速检测到,而有些只能通过延迟判断,比如NCCL的all-reduce操作卡住了。

另外,大规模训练时偶尔会出现内存位翻转导致的数据损坏,进而引发损失爆炸。这种现象在小规模训练中也有,但非常罕见,难以预先通过软件检测。虽然部分硬件具备内置校验功能,但像H100这样的GPU还没有这一特性。

为应对这些故障,建议频繁保存模型状态,并快速从故障中恢复。通常,模型状态会首先保存到CPU内存,然后再异步保存到磁盘或远程存储中。模型状态保存时可以分片处理,不需要每个GPU保存所有权重,而是保存一部分,其他部分可以从其他GPU的检查点中恢复。这样即使某个节点发生故障,恢复时间也会大大缩短。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值