下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文5873字)。
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
四、直接复制粘贴的datapasta扩展包
传统的数据导入方法虽然可靠,但也可能在初学者中引发一些错误。特别是在处理来自网页、Excel或其他来源的数据时,格式问题、数据清洗和转换常常成为挑战。为了解决这些问题,R的datapasta
扩展包提供了一种高效、直观的数据导入方式,特别是在需要从各种来源直接粘贴数据时,而不需要进行复杂的数据处理或转换。
要使用datapasta
扩展包,首先需要安装和加载它。可以通过以下代码安装:
install.packages("datapasta")
library(datapasta)
datapasta
的核心功能是允许用户将数据直接从剪贴板粘贴到RStudio中。这一过程非常简单,以下是具体的操作步骤:
从Excel或者CSV等文件中直接复制数据
复制数据:在Excel中选择要复制的数据范围,按下Ctrl+C(
在Mac上,Command+C)
将其复制到剪贴板。
RStudio界面功能直接粘贴
进入RStudio:打开RStudio,确保datapasta
包已经加载。
使用Addins功能:在RStudio的菜单栏中,点击“Addins”按钮,选择“Paste as data.frame”选项。这时,数据将自动粘贴为data.frame
格式并显示在RStudio的控制台中,如下图。
其实,data.frame
、data.table
和 tribble
都是R中用于存储表格数据的结构,但它们各自有不同的特点和用途。
data.frame
是R中最基本和最常用的表格数据结构。它类似于数据库中的表格,每列可以包含不同类型的数据(如数值、字符、因子等)。通过 data.frame()
函数可以创建数据框,并支持基本的数据操作,如子集选择、行列添加和删除、数据排序等。尽管 data.frame
对于小规模数据集非常灵活,但在处理大规模数据时,其性能相对较低。
data.table
是 data.frame
的增强版,由 data.table
包提供。它针对大规模数据进行了优化,具有高效的内存使用和快速的数据操作能力。data.table
提供了简洁的语法来进行数据操作,减少了代码量,并支持键和索引,方便快速查找和排序。其内联操作功能可以避免创建临时副本,提高效率,同时与 data.frame
兼容,可以无缝转换。
tribble
是 tibble
包提供的一种创建表格数据的方式,特别适合手动输入小规模数据。使用 tribble()
函数创建数据时,语法简洁且易于阅读,生成的对象是 tibble
,这种现代化的 data.frame
具有更好的打印格式和更严格的子集选择规则。tribble
适合用于教学和示例代码中的小规模数据输入。
用命令函数来直接粘贴
例如,我们要直接粘贴成tribble的数据集形式,我们也可以直接用命来函数代替
Addins功能。
library(datapasta)
# 粘贴数据,生成数据集frmgham
frmgham <- datapasta::tribble_paste()
# 查看frmgham数据集
print(frmgham)
~~~~~~~~~~
在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
第十一章:主成分分析
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
第十二章:常见类型回归分析