下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文5050字)。
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1、S语言的发展
S语言的设计初衷是为了使统计计算更加便捷,并且其灵活的语法和丰富的统计功能深受用户喜爱。然而,由于S语言是商业化软件,价格昂贵,这限制了其在学术界和开源社区的广泛使用。
John Chambers是统计计算领域的先驱,以创建S编程语言以及作为R语言项目的核心成员而闻名,其他开发者还包括Rick Becker、Trevor Hastie、William Cleveland和Allan Wilks。Chambers于1976至1989年在贝尔实验室主要开发了S语言,旨在快速、准确地将思想转化为软件。S语言对学术研究产生了深远影响,开创了交互式图形和易于访问的文档。而且,Chambers还因开发S语言在1999年获得了ACM软件系统奖。2005年从贝尔实验室退休后,Chambers成为多所大学的客座教授,
2. R语言的发明人
R语言的发明者是新西兰统计学家Ross Ihaka和Robert Gentleman。Ross Ihaka出生于1954年,是一位在统计计算领域有着广泛研究的学者。而Robert Gentleman出生于1958年,他的研究兴趣主要集中在计算生物学和生物信息学领域。两人都对S语言有深入研究,并意识到S语言的强大功能如果能够在开源环境下实现,将对统计学界产生深远影响。
1980年代末期,Ihaka和Gentleman开始在奥克兰大学教授统计编程课程。在教学过程中,他们感受到需要一种更加适合教学和研究的编程工具。虽然S语言功能强大,但其商业化性质使其难以普及。为了应对这一挑战,Ihaka和Gentleman决定开发一种基于S语言的开源统计编程语言,这便是R语言的起源。
其实,R语言的诞生离不开S语言的影响,特别是在语法和函数结构方面。S语言的一大特点是其面向对象的编程风格,这一特点在R语言中得到了继承和发展。R语言通过函数式编程和面向对象编程的结合,提供了灵活的编程接口,允许用户自定义数据结构和分析流程。 只是由于S语言的商业化运作使得它的广泛使用受到限制,尤其是在学术界和研究机构。因此,S语言的开源替代品逐渐成为学术界的需求。
R语言 | S语言 | |
---|---|---|
起源 | 1990年代初在奥克兰大学开发的开源项目,灵感来自S语言 | 1970年代中期在贝尔实验室开发,主要用于内部统计研究 |
主要开发者 | Ross Ihaka, Robert Gentleman | John Chambers, Rick Becker, Allan Wilks |
目的 | 最初设计用于统计计算和图形制作,重点是易用性和可扩展性 | 设计用于统计计算和数据分析,主要用于研究目的 |
是否开源 | 是的,R完全开源 | 最初是专有软件,后来的版本(S-PLUS)为商业软件 |
受欢迎程度 | 在学术界和工业界广泛流行;有强大的社区驱动发展 | 在研究机构和统计学家中流行,尤其是在1980年代和1990年代 |
社区支持 | 拥有广泛的社区支持,有众多论坛、邮件列表和在线资源 | 社区支持有限,主要由商业实体(如S-PLUS)推动 |
包管理 | Comprehensive R Archive Network (CRAN) 拥有超过18,000个包 | S-PLUS中的商业包管理系统;没有CRAN那么广泛 |
语法相似性 | 与S语言高度相似,但包含了额外的功能和改进 | R语言的基础;R语言扩展和修改了S语言的语法 |
应用范围 | 范围广泛,用于统计分析、数据可视化等 | 主要集中在统计分析和数据建模 |
面向对象编程 | 支持面向对象编程,包括S3和S4类 | 支持面向对象编程,但主要使用S3类 |
数据处理能力 | 有效处理大型数据集;设计时考虑了数据操作和分析的需求 | 数据分析效果良好,但与现代R相比处理极大数据集的效率较低 |
词法作用域 | 使用类似于Scheme的词法作用域,使代码更灵活和可靠 | 早期版本使用动态作用域;后来的版本引入了词法作用域 |
二、R语言的发展壮大
~~~~~~~~~~
在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
第十一章:主成分分析
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
第十二章:常见类型回归分析