医学图像大模型发展详细历程(2017-2024)
医学图像分析是人工智能在医疗领域的重要应用方向。随着深度学习的发展,尤其是Transformer架构的兴起,大模型在医学图像领域的应用逐渐成熟。以下是医学图像大模型的关键发展阶段:
1. 早期阶段(2017-2019):CNN主导
(一)关键模型与技术
(1)U-Net (2015, 但2017年后广泛应用)
由Ronneberger等人提出,用于医学图像分割(如MRI、CT)。
采用编码器-解码器结构,结合跳跃连接(skip connections)提升小目标分割能力。
至今仍是医学图像分割的基准模型。
(2)DenseNet (2017)
密集连接结构(Dense Blocks)提升特征复用,适用于小样本医学数据。
在胸部X-ray分类(如肺炎检测)中表现优异。
(3)ResNet & VGG的医学适配
用于分类任务(如眼底图像中的糖尿病视网膜病变检测)。
(二)主要挑战
(1)数据量小,依赖数据增强和迁移学习。
(2)计算资源有限,模型参数量较小(通常<100M)。
2. Transformer进入医学图像(2020-2021)
(一)关键突破
(1)Vision Transformer (ViT, 2020)
Dosovitskiy等人将Transformer引入计算机视觉,证明其在大规模数据(如ImageNet)上的有效性。
医学领域开始尝试ViT,但受限于数据量,效果不如CNN。
(2)Swin Transformer (2021)
微软提出分层(Hierarchical)Transformer,适用于高分辨率医学图像(如病理切片)。
在医学影像分割(如BraTS脑肿瘤分割)中超越U-Net。
(二)医学专用Transformer
(1)TransUNet (2021)
结合ViT与U-Net,首次在医学图像分割任务(如器官分割)上超越纯CNN方法。
(2)UNETR (2021)
完全基于Transformer的3D医学图像分割模型(如CT/MRI体积数据)。
(三)主要进展
开始探索自监督学习(如对比学习)缓解标注数据不足问题。
模型规模仍较小(<500M参数),但计算需求增加。
3. 大模型时代(2022-2023):医学多模态与通用模型**
(一)关键趋势
(1)大规模预训练 + 微调
受NLP领域(如GPT-3)启发,医学领域开始训练通用视觉模型。
例如:
Med3D (2022):3D医学影像预训练模型(CT/MRI)。
ConVIRT (2022):医学图像-文本对比学习模型(如X-ray与报告对齐)。
(2)多模态医学大模型
BioViL (2022, Microsoft):结合图像与临床文本,用于胸部X-ray诊断。
PaLM-E (2023, Google):通用多模态模型,支持医学图像问答。
(3)医学扩散模型
Stable Diffusion的医学适配:用于生成合成医学数据(如MRI增强)。
(二)模型规模
参数量突破1B(10亿级),依赖大规模私有医学数据(如NIH ChestX-ray、UK Biobank)。
4. 当前前沿(2024):医学通用AI
(一)最新进展
(1)GPT-4V (2023) 在医学的应用
支持医学图像问答(如皮肤病变分类、X-ray报告生成)。
(2)LLaVA-Med (2024)
基于LLaVA的医学多模态模型,支持开放域医学问答。
(3)OpenAI + 医院合作
如梅奥诊所使用大模型进行放射学辅助诊断。
(二)技术挑战
数据隐私:医疗数据难以公开共享,限制模型规模。
可解释性:黑盒模型如何获得医生信任?
监管合规:FDA对AI医疗设备的认证要求严格。
(三)未来方向
1. 通用医学基础模型:类似GPT-4的“医学版”,支持诊断、报告生成、手术规划等。
2. 联邦学习:跨医院协作训练,解决数据孤岛问题。
3. 实时边缘计算:轻量化模型部署在超声、内镜等设备上。