用于医学图像方面的大模型发展历程

医学图像大模型发展详细历程(2017-2024)

医学图像分析是人工智能在医疗领域的重要应用方向。随着深度学习的发展,尤其是Transformer架构的兴起,大模型在医学图像领域的应用逐渐成熟。以下是医学图像大模型的关键发展阶段:

1. 早期阶段(2017-2019):CNN主导
(一)关键模型与技术
(1)U-Net (2015, 但2017年后广泛应用)
 由Ronneberger等人提出,用于医学图像分割(如MRI、CT)。  
 采用编码器-解码器结构,结合跳跃连接(skip connections)提升小目标分割能力。  
 至今仍是医学图像分割的基准模型。  

(2)DenseNet (2017)
  密集连接结构(Dense Blocks)提升特征复用,适用于小样本医学数据。  
  在胸部X-ray分类(如肺炎检测)中表现优异。  

(3)ResNet & VGG的医学适配
 用于分类任务(如眼底图像中的糖尿病视网膜病变检测)。  

(二)主要挑战
(1)数据量小,依赖数据增强和迁移学习。  

(2)计算资源有限,模型参数量较小(通常<100M)。  

2. Transformer进入医学图像(2020-2021)
(一)关键突破
(1)Vision Transformer (ViT, 2020)
  Dosovitskiy等人将Transformer引入计算机视觉,证明其在大规模数据(如ImageNet)上的有效性。  
  医学领域开始尝试ViT,但受限于数据量,效果不如CNN。  

(2)Swin Transformer (2021)
  微软提出分层(Hierarchical)Transformer,适用于高分辨率医学图像(如病理切片)。  
  在医学影像分割(如BraTS脑肿瘤分割)中超越U-Net。  

(二)医学专用Transformer
(1)TransUNet (2021)
  结合ViT与U-Net,首次在医学图像分割任务(如器官分割)上超越纯CNN方法。  
(2)UNETR (2021)
  完全基于Transformer的3D医学图像分割模型(如CT/MRI体积数据)。  

(三)主要进展
开始探索自监督学习(如对比学习)缓解标注数据不足问题。  
模型规模仍较小(<500M参数),但计算需求增加。  

3. 大模型时代(2022-2023):医学多模态与通用模型**
(一)关键趋势
(1)大规模预训练 + 微调
  受NLP领域(如GPT-3)启发,医学领域开始训练通用视觉模型。  
  例如:  
    Med3D (2022):3D医学影像预训练模型(CT/MRI)。  
    ConVIRT (2022):医学图像-文本对比学习模型(如X-ray与报告对齐)。  

(2)多模态医学大模型  
  BioViL (2022, Microsoft):结合图像与临床文本,用于胸部X-ray诊断。  
  PaLM-E (2023, Google):通用多模态模型,支持医学图像问答。  

(3)医学扩散模型
  Stable Diffusion的医学适配:用于生成合成医学数据(如MRI增强)。  

(二)模型规模
参数量突破1B(10亿级),依赖大规模私有医学数据(如NIH ChestX-ray、UK Biobank)。  

4. 当前前沿(2024):医学通用AI
(一)最新进展
(1)GPT-4V (2023) 在医学的应用
   支持医学图像问答(如皮肤病变分类、X-ray报告生成)。  
(2)LLaVA-Med (2024)
   基于LLaVA的医学多模态模型,支持开放域医学问答。  
(3)OpenAI + 医院合作
  如梅奥诊所使用大模型进行放射学辅助诊断。  

(二)技术挑战
数据隐私:医疗数据难以公开共享,限制模型规模。  
可解释性:黑盒模型如何获得医生信任?  
监管合规:FDA对AI医疗设备的认证要求严格。  

(三)未来方向
1. 通用医学基础模型:类似GPT-4的“医学版”,支持诊断、报告生成、手术规划等。  
2. 联邦学习:跨医院协作训练,解决数据孤岛问题。  
3. 实时边缘计算:轻量化模型部署在超声、内镜等设备上。  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值