基于联合投影学习和张量分解的不完整多视图聚类

本人认为主要思想是引入正交矩阵进行图学习,把图折叠成张量,张量分解后把稀疏噪声张量“丢掉”。本来噪声在数据中,对数据矩阵进行图学习后噪声跟着特征矩阵来到了图,把图折叠成张量后噪声来到了张量中,这样对原始数据去噪变成了对张量去噪,因此只需要把噪声张量分解出来即可。最后在内在张量构成的图上进行谱聚类。

这篇文章的优点是引入了一个正交投影矩阵,将高维特征投影到低维空间中进行紧凑的特征学习,能够更优的为每个不完整视图构建子图,张量分解去噪也更好的考虑了簇间和簇内结构变化所引起的图噪声。

摘要:

由于特征冗余和噪声,在原始高维数据上构建的图可能不是最优的。此外,在不完全图和完全图的转换过程中,通常忽略了类间和类内结构变化所引起的图噪声。为了解决这些问题,我们提出了一种基于联合投影学习和张量分解(JPLTD)的IMVC方法。具体来说,为了减轻高维数据中冗余特征和噪声的影响,JPLTD引入了一个正交投影矩阵,将高维特征投影到低维空间中进行紧凑的特征学习。同时,基于低维空间,学习不同视图实例对应的相似图,JPLTD将这些相似图叠加成三阶低秩张量,探索不同视图之间的高阶相关性。我们进一步考虑了由缺失样本引起的投影数据的图噪声,并使用基于张量分解的图滤波器进行鲁棒聚类。JPLTD将原始张量分解为一个内禀张量和一个稀疏张量。

符号:

基于图的IMVC前言 :

基于图的IMVC方法试图通过构造相似图来表征不同数据点之间的成对相似度。设Av∈Rnv×n为第v个视图对应的索引矩阵,其元素定义如下:

然后,将典型的基于图的IMVC框架分为图学习图融合两部分 

其中,Gv∈Rn×n表示要学习的第v个视图的完全图,AvGvAvT∈Rnv×nv表示第v个视图对应的子图,提取现有样本对应的子图。Ev∈Rdv×nv为残差矩阵,φ(·)为关于Gv的范数正则化项,λ > 0为平衡参数。学习不同视图对应的完全图{Gv}m v=1后,通过融合{Gv}m v=1得到最优共识图G∈Rn×n

 对G进行谱聚类,得到聚类结果。

Model

用投影学习构造图 

我们引入投影矩阵{Wv}m v=1∈Rk×dv,将原始数据投影到低维空间中进行紧凑特征学习。同时,我们基于低维空间进行图学习,可以表示为

k为得到的潜在空间的维数,{Ev}m v=1∈Rk×nv为残差矩阵,φ(Gv)为图正则化项,Ik为k阶单位矩阵。我们使{Wv}m v=1的行是正交的,这样可以防止解退化,提高模型[48]的优化效率。此外,由于L2,1-范数比Frobenius范数对离群值和样本特定损坏的鲁棒性更强,我们引入L2,1-范数来描述以下模型的重构误差和变化

 

用张量分解恢复内在图

虽然学习图表征了不同视图对应的样本相似度,但它们应该具有相似的结构,因为来自所有视图的实例描述了相同的对象。因此,我们引入一个张量核范数正则化项来探索不同视图之间的相关性。具体来说,我们将图{Gv}m v=1叠加到一个张量G∈Rn×m×n中,利用张量学习研究各视图之间的高阶关系,并利用张量核范数表征G的低秩性质。

每个视图的完全图{Gv}m v=1中的缺失值一般都被0填充,因此,我们将隐藏在张量G中的有害信息视为稀疏噪声。为了减轻噪声干扰,我们将张量G分解成内在张量B和稀疏噪声张量P,最终的模型如下

 

聚类结果 

总结:

在本文中,将图学习和张量恢复集成到一个统一的模型中。一方面,JPLTD将初始高维数据投影到低维空间进行紧凑特征学习,以减轻原始特征冗余的影响;另一方面,为了减少图学习带来的稀疏噪声的影响,JPLTD将不完全图形成的原始张量分解为一个本构张量和一个稀疏张量。稀疏张量描述稀疏噪声。

前景:

考虑使用其他图来降低其复杂性,同时保持其良好的性能。

 

 

  • 27
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值