RAGFlow: 一个完整的RAG使用解决方案

概述

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

在这里插入图片描述

特性

1. “Quality in, quality out”

  • 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。

  • 真正在无限上下文(token)的场景下快速完成大海捞针测试。

2. 基于模板的文本切片

  • 不仅仅是智能,更重要的是可控可解释。

  • 多种文本模板可供选择

3. 有理有据、最大程度降低幻觉(hallucination)

  • 文本切片过程可视化,支持手动调整。

  • 有理有据:答案提供关键引用的快照并支持追根溯源。

4. 兼容各类异构数据源

  • 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。

5. 全程无忧、自动化的 RAG 工作流

  • 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。

  • 大语言模型 LLM 以及向量模型均支持配置。

  • 基于多路召回、融合重排序。

  • 提供易用的 API,可以轻松集成到各类企业系统。

在这里插入图片描述

在这里插入图片描述

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在需要帮助用户解决在RAGFlow使用OpenAI框架调用Agent API的问题。用户已经提供了相关的引用内容,我需要结合这些信息来生成一个示例教程。首先,我需要确认RAGFlow的架构和它与OpenAI的集成方式。根据引用[2],RAGFlow一个基于深度文档理解的开源RAG引擎,支持复杂格式数据的处理,并且结合了大语言模型。用户想了解如何通过OpenAI框架调用其Agent API,所以我需要先理解RAGFlow的API接口和Agent的工作流程。 接下来,我应该考虑RAGFlow的文档结构,是否有现成的API文档或者开发者指南。假设用户需要的是具体的代码示例,我需要构造一个可能的步骤流程,比如设置API密钥、构建请求、处理响应等。可能需要使用Python作为示例语言,因为很多AI框架常用Python。 然后,我需要确保示例中正确引用了OpenAI的库,比如openai库,以及RAGFlow可能需要的其他依赖。同时,要考虑到错误处理和参数设置,比如temperature参数控制生成结果的随机性。此外,用户可能需要了解如何传递文档路径或内容到API请求中,以便RAGFlow进行检索增强生成。 可能还需要提到RAGFlow的本地部署情况,因为引用[2]提到它支持私有化部署,所以示例可能需要包含本地服务器的端点配置。另外,要确保引用的格式正确,如引用[^2]在适当的位置。 最后,生成的相关问题需要围绕用户可能的后续疑问,比如认证方式、数据处理、结果优化和调试方法等。需要确保这些问题与主题相关,并且能够帮助用户深入理解如何在RAGFlow中有效使用OpenAI的Agent API。</think>以下是在RAGFlow中通过OpenAI框架调用Agent API的示例教程: ### 一、环境准备 1. 安装RAGFlow最新版本(建议v0.3.0+) 2. 获取OpenAI API密钥,确保已开通GPT-3.5/4接口权限 3. 配置RAGFlow的本地服务端点(默认`http://localhost:9380`) ### 二、基础调用示例 ```python import openai from ragflow import RAGClient # 初始化配置 openai.api_key = "sk-your-openai-key" rag_client = RAGClient( base_url="http://localhost:9380", api_key="ragflow-api-key" ) # 创建Agent工作流 def create_rag_agent(query: str, document_path: str): # 文档解析阶段 parsed_doc = rag_client.parse_document( file_path=document_path, chunk_size=512 ) # 检索增强阶段 context = rag_client.retrieve( query=query, top_k=3, similarity_threshold=0.7 ) # 调用OpenAI生成 response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "你是一个智能文档助手"}, {"role": "user", "content": f"基于以下上下文:{context},回答问题:{query}"} ], temperature=0.5 ) return response.choices[0].message.content ``` ### 三、核心参数说明 1. 文档解析参数: - `chunk_size`: 文本分块大小(建议512-1024) - `parser_type`: 支持PDF/DOCX/Markdown等格式[^2] 2. 检索参数: - `top_k`: 返回的上下文片段数量 - `similarity_threshold`: 相似度过滤阈值 3. OpenAI参数: - `temperature`: 控制生成随机性(0-2) - `max_tokens`: 最大输出长度 ### 四、增强功能示例(带引用溯源) ```python # 获取带引用的响应 def get_response_with_citations(query): result = rag_client.query( query=query, llm_config={ "provider": "openai", "model": "gpt-4-1106-preview", "temperature": 0.3 }, return_references=True # 启用引用溯源功能 ) print(f"答案:{result.answer}") for ref in result.references: print(f"引用文档:{ref.document} 页码:{ref.page}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值