RNA-seq定量分析学习笔记

转载(https://mp.weixin.qq.com/s/JnfA4toH82xNQWsCTEEulA)

RNA-seq技术革命性地改变了转录组学研究,使研究者能够以前所未有的深度和范围来探索基因表达。在RNA-seq数据的处理流程中,比对后的定量分析步骤至关重要,它涉及将测序产生的reads准确地映射到基因或转录本上,并据此量化它们的表达水平。

1. 定量步骤的重要性

定量分析的目的是要从生物学的角度理解基因如何在不同的条件、不同的细胞类型或不同的发育阶段中表达。这一步骤不仅是理解基因表达调控的关键,也是发现新基因、识别转录本异构体以及探究基因功能的基础。在比对完成后,定量分析涉及将reads计数并归一化,这一过程需要考虑多种因素,包括但不限于reads的长度、比对质量以及样本间的差异。

定量分析的挑战在于,reads的分布并不总是均匀的,而且某些reads可能同时映射到多个位置或多个基因。因此,定量分析工具必须能够处理这些复杂情况,并准确地将reads分配给相应的基因或转录本。

2. 常用工具介绍:HTSeq-count和FeatureCounts
HTSeq-count

HTSeq-count是一种流行的Python库,广泛用于RNA-seq数据的定量分析。它通过对比对文件进行逐行扫描,将reads分配给特定的基因或转录本。HTSeq-count的独特之处在于其灵活性和精确性,特别是在处理复杂的剪接模式和重叠基因时。

  • 原理:HTSeq-count使用用户提供的注释文件(如GTF格式),识别基因或转录本的位置,并根据reads与这些特征的重叠情况来分配reads。它提供了多种分配策略(如union、intersection-strict等),让用户可以根据具体的实验设计和研究需求选择最合适的策略。
FeatureCounts

FeatureCounts是Subread软件包的一部分,它以其高效率和用户友好性而受到广泛欢迎。FeatureCounts能够处理大规模的数据集,并支持多线程,从而大大加快了定量分析的速度。

  • 原理:类似于HTSeq-count,FeatureCounts也是通过比对文件和注释文件来分配reads。它的核心算法非常高效,能够快速处理成千上万的reads。FeatureCounts特别适合用于标准化的基因表达研究,例如差异表达分析。
3. 定量水平介绍
  • Exon级别定量:在外显子(exon)级别的定量分析中,重点在于计算每个外显子的reads覆盖度。这对于研究剪接变异和外显子使用的动态变化尤为重要。
  • Transcript级别定量:在转录本(transcript)级别的定量中,重点是区分和量化同一基因的不同转录本。这需要更精细的注释信息和更复杂的算法。
  • Gene级别定量:Gene级别的定量是最常见的RNA-seq数据分析方法。在这个水平上,所有映射到同一个基因的reads被累加起来,形成该基因的整体表达水平。
4. HTSeq-count使用及参数解释

HTSeq-count是一种常用于RNA-seq数据定量分析的工具。它可以在不同的生物学水平(如exon、gene、transcript)上进行定量分析。

示例代码及解释

基因水平定量(Gene-level)

htseq-count -f bam -r pos -s no -i gene_id aln.bam genes.gtf > gene_counts.txt
  • -f bam:指定输入文件格式为BAM。
  • -r pos:指定reads在参考序列上的顺序(按位置排序)。
  • -s no:指定非链特异性测序。
  • -i gene_id:指定GTF文件中用于识别基因的属性。
  • aln.bam:输入的比对文件。
  • genes.gtf:注释文件。
  • gene_counts.txt:输出文件,包含基因水平的计数。

链特异性单链测序(Single-end, strand-specific)

htseq-count -f bam -r pos -s reverse -i gene_id aln.bam genes.gtf > gene_counts.txt
  • -s reverse:指定链特异性测序,适用于单链测序。

链特异性双链测序(Paired-end, strand-specific)

htseq-count -f bam -r pos -s reverse -i gene_id aln_pe.bam genes.gtf > gene_counts.txt
  • aln_pe.bam:双链测序的比对文件。
5. FeatureCounts使用及参数解释

FeatureCounts是用于快速而准确地对RNA-seq reads进行定量分析的工具,可以在不同水平(exon、gene、transcript)上进行定量。

示例代码及解释

基因水平定量(Gene-level)

featureCounts -T 8 -t exon -g gene_id -a genes.gtf -o gene_counts.txt aln.bam
  • -T 8:指定使用8个线程。
  • -t exon:指定定量的特征类型为外显子。
  • -g gene_id:指定用于计数的基因ID。
  • -a genes.gtf:注释文件。
  • -o gene_counts.txt:输出文件名。
  • aln.bam:输入的比对文件。

链特异性单链测序(Single-end, strand-specific)

featureCounts -T 8 -t exon -g gene_id -s 1 -a genes.gtf -o gene_counts.txt aln.bam
  • -s 1:指定单链测序的链特异性模式。

链特异性双链测序(Paired-end, strand-specific)

featureCounts -T 8 -t exon -g gene_id -p -s 1 -a genes.gtf -o gene_counts.txt aln_pe.bam
  • -p:指定输入文件为双链测序。
  • aln_pe.bam:双链测序的比对文件。

总结

RNA-seq基因组比对是转录组研究的关键步骤,它涉及将RNA-seq产生的短序列读取(reads)准确地映射到参考基因组上。这个过程充满挑战,包括处理高度多样化的序列、剪接事件、测序错误和短读长带来的限制。在解决这些挑战方面,HTSeq-count和FeatureCounts等高效的比对工具发挥着重要作用。

希望这篇学习笔记对你有所帮助!如果有任何问题或需要进一步的指导,请随时联系我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值