1.SK 机制
SK注意力机制(Selective Kernel Attention)是一种用于计算机视觉任务的注意力机制,旨在增强卷积神经网络(CNN)的特征提取能力。它通过动态选择不同大小的卷积核来捕捉多尺度特征,从而提高模型对图像中不同尺度信息的感知能力。
SK注意力机制的核心思想
SK注意力机制的核心是通过自适应地选择卷积核的大小,使网络能够根据输入内容动态调整感受野,从而更好地捕捉多尺度特征。具体来说,它通过以下步骤实现:
-
多分支卷积:使用多个不同大小的卷积核(如3x3和5x5)对输入特征图进行卷积操作,生成多尺度的特征图。
-
特征融合:将多尺度的特征图进行融合(通常通过相加或拼接),得到一个综合的特征表示。
-
注意力权重计算:
-
使用全局平均池化(Global Average Pooling, GAP)对融合后的特征图进行压缩ÿ
-