ResNet改进(7):添加 SK注意力机制

1.SK 机制

SK注意力机制(Selective Kernel Attention)是一种用于计算机视觉任务的注意力机制,旨在增强卷积神经网络(CNN)的特征提取能力。它通过动态选择不同大小的卷积核来捕捉多尺度特征,从而提高模型对图像中不同尺度信息的感知能力。

SK注意力机制的核心思想

SK注意力机制的核心是通过自适应地选择卷积核的大小,使网络能够根据输入内容动态调整感受野,从而更好地捕捉多尺度特征。具体来说,它通过以下步骤实现:

  1. 多分支卷积:使用多个不同大小的卷积核(如3x3和5x5)对输入特征图进行卷积操作,生成多尺度的特征图。

  2. 特征融合:将多尺度的特征图进行融合(通常通过相加或拼接),得到一个综合的特征表示。

  3. 注意力权重计算

    • 使用全局平均池化(Global Average Pooling, GAP)对融合后的特征图进行压缩ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值