今天给大家推荐一个能疯狂涨点的神器:即插即用特征增强模块!它是提升模型性能的一种关键技术,尤其在目标检测等CV任务中,作用显著。比如模型FeatAug-DERT便通过该方法,检测精度远超SOTA,中稿TPAMI24!
主要在于:一方面,它能改进特征提取过程,通过对embedding层的输出进行矫正,使相同特征在不同样本下的表征差异化,从而提升模型的表达能力。另一方面,在复杂背景下,其还能提升模型区分目标与背景的能力,减少误检和漏检,增强鲁棒性。
此外,其即插即用的设计,也方便我们集成到现有的网络架构中,加快实验速度。
为让大家能够深入理解该模块,用到自己的文章里,早点发出顶会,我给大家准备了8个必备模块,相关论文和源码都有!
论文原文+开源代码需要的同学看文末
FFCA-YOLO for Small Object Detection in Remote Sensing Images
内容:文章提出了一种针对遥感图像中小目标检测的高效检测器,它通过引入三个创新的轻量级即插即用模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM),显著提升了网络的局部感知能力、多尺度特征融合能力和全局关联能力。
FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background
内容:文章提出了一种用于复杂场景语义分割的特征增强网络,它通过引入自适应特征增强(AFE)模块来捕捉更大的上下文信息和语义线索。AFE模块包含空间上下文模块(SCM)和特征细化模块(FRM),分别用于处理尺度变化和突出高频及低频特征。实验结果表明,FANet在处理背景杂乱和半透明物体等复杂场景时,相较于现有方法在ZeroWaste-f数据集上取得了更高的性能。
Instructive Feature Enhancement for Dichotomous Medical Image Segmentation
内容:本文提出了一种名为IFE的指导性特征增强方法,用于二元医学图像分割。IFE通过基于局部曲率或全局信息熵标准自适应选择富含纹理线索和强判别能力的特征通道来增强原始特征。该方法简单、通用且具有一定的可解释性,能够提高经典分割网络在不同解剖结构和模态上的性能。
FeatAug-DETR: Enriching One-to-Many Matching for DETRs with Feature Augmentation
内容:本文提出了一种名为FeatAug-DETR的方法,旨在通过特征增强来丰富DETR中的one-to-many匹配机制。该方法包括DataAug-DETR和FeatAug-DETR两种策略。DataAug-DETR通过在同一个训练批次中包含多个图像的增强版本来实现one-to-many匹配,而FeatAug-DETR则通过增强图像特征来实现相同的目标。
码字不易,欢迎大家点赞评论收藏!
关注下方《AI科研技术派》
回复【即插特增】获取完整论文
👇