YOLO11改进-模块-引入添加自适应特征增强(AFE)模块 提高复杂场景中的检测精度

        在语义分割领域,传统 CNN 方法受限于局部短程结构,难以获取长程上下文信息,虽有改进但面对复杂场景仍不足;视觉 Transformer 及其混合模型虽有进展,但存在对语义级上下文捕捉不佳、细节处理弱、数据需求大等问题。在此背景下,为解决复杂场景(如杂乱背景、半透明物体及尺度变化)语义分割难题,特征放大网络(FANet)中的自适应特征增强(AFE)块被提出,它通过空间上下文模块(SCM)和特征细化模块(FRM)并行工作,自适应捕获丰富特征,助力提升语义分割性能。基于此,本文将AFE和C3K2相结合提升YOLOv11模型的细节特征。

上面是原模型,下面是改进模型

​​​​​​​​​​​​​​​​​​​​​

1. 自适应特征增强AFE结构介绍          

        AFE(自适应特征增强)模块是 FANet 中用于语义分割的关键部分,其原理和结构如下:
        1. 原理:在语义分割任务中,为了更好地处理复杂场景,尤其是存在杂乱背景、半透明物体和尺度变化等情况,AFE 模块旨在通过结合不同的特征处理方式,自适应地增强特征。它利用空间上下文模块(SCM)挖掘空间信息以处理尺度变化,通过特征细化模块(FRM)捕获语义线索来突出物体细节,从而提升模型对复杂场景的理解和分割能力。
        2. 结构:AFE 块主要由四个关键组件构成。

        首先是卷积嵌入(CE),输入特征先经过 LayerNorm 和 CE 进行处理,CE 输出再经 1x1 卷积层将通道压缩一半,这有助于减少计算开销并促进特征混合。

        然后是空间上下文模块(SCM),其采用较大核(如 7x7 的组卷积)的卷积操作,接收压缩后的特征,目的是增大感受野,捕捉更广泛的空间上下文信息,以应对场景中的尺度变化。

        同时,特征细化模块(FRM)也接收压缩后的特征,它基于图像锐化和对比度增强的概念设计,能够同时捕获低频和高频区域信息,对特征进行细化。

        最后,SCM 和 FRM 的输出通过 1x1 卷积层和卷积多层感知器(ConvMLP)进行融合和进一步增强,得到最终的增强特征表示。

        

2. YOLOv11与自适应特征增强AFE的结合

       在yolo目标检测模型中,为了增强backbone的多尺度特征,本文使用AFE和C3K2相结合提升YOLOv11模型的多尺度特征。

3. 高效多尺度注意力EMA代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve · GitHub

视频讲解:YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

YOLOv11模型改进讲解,教您如何根据自己的数据集选择最优的模块提升精度_哔哩哔哩_bilibili

YOLOv11全部代码,现有几十种改进机制。

 4. 将高效多尺度注意力EMA引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

第二:在task.py中导入C3k2_AFE包

第三:在task.py中的模型配置部分下面代码

    ​​​​​​​​​​​​​

第四:将模型配置文件复制到YOLOV11.YAMY文件中

    

     第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\model\yolov11\ultralytics\cfg\models\11\yolo11_AFE.yaml")\
        .load(r'D:\model\yolov11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\model\yolov11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                         #  amp = True
                          )
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值