一文了解向量数据库在RAG中扮演的角色

共同探讨有深度的生成式AI技术前沿洞见、技术迭代、案例解析、方法和实践,请关注“神州问学”公众号,加入社群!
  1. 引言

在过去的一年里,大型语言模型的发展以及人工智能生成浪潮在全球范围内引起了广泛关注。然而,这些大型语言模型面临一个众所周知的挑战:一旦训练完成,它们就无法理解最新的或某些未经过训练的专业领域知识。为了解决这个问题,检索增强生成(Retrieval-Augmented Generation, RAG)技术应运而生。RAG的核心之一就是向量数据库,这种数据库专门用于处理向量数据,为机器学习和人工智能等领域提供了强大的支持。随着AI时代的到来,向量数据格式日益重要,在未来的数据基础设施建设中,向量数据库很可能会成为一个关键组成部分。

  1. RAG简介

RAG是一种结合了检索和生成的技术,它通过从海量数据中检索查询到的信息,来增强语言模型的生成能力。这种方法不仅提高了模型处理未知或少见信息的能力,还使得模型能够更加准确和灵活地应对新的挑战。在RAG技术中,向量数据库扮演着至关重要的角色。它们使得模型能够快速有效地检索和处理大量的向量数据,从而增强了模型的整体性能和应用范围。向量数据库在处理复杂查询、提高检索效率以及优化数据存储方面都展现出了巨大的潜力。

  1. 向量数据库基础

对于人类来说,我们往往能通过一些关键的特征来区分物体间的差异。举例来说,对于一些熟悉猫的朋友,他们能很快地区分猫与猫之间的种类差异,这是因为我们会根据不同角度来观察猫的特征,比如体形的大小。但对于都属于大型猫的品种呢?我们可能需要更多的特征来帮助我们区分,比如毛发的长短。我们可以依据这些特征将猫映射到一个二维坐标系中来可视化猫与猫之间的差异

### RAG 检索增强生成与向量数据库结合的实战案例 #### 使用场景概述 在现代自然语言处理技术中,RAG(检索增强生成)通过结合信息检索和生成模型来提高语言模型的知识覆盖范围和回答准确性[^1]。特别是在构建特定领域内的问答系统时,这种方法尤为有用。 #### 实战案例分析 一个典型的实际应用是在医疗健康咨询平台上的部署。该平台旨在提供专业的医学建议给用户。为了实现这一点,开发者们采用了基于ChatGPT + Vector Database + Prompt的技术栈(CVP),这不仅提高了回复的质量,还增强了系统的可靠性和时效性[^2]。 在这个例子中: - **数据准备阶段**:收集并整理了大量的医学文献、临床指南以及常见疾病的相关资料作为训练素材; - **向量化过程**:这些文本被转化为高维空间中的稠密向量表示形式,并存入专门设计用于快速查找相似项的向量数据库内; - **查询优化环节**:当接收到用户的提问后,系统会先将其转换成对应的语义向量表达方式,再以此为基础,在预先建立好的知识库里寻找最接近的答案片段; - **响应合成部分**:最后一步则是由强大的预训练模型根据找到的信息片段自动生成连贯且准确的回答内容返回给使用者。 ```python from langchain import LangChain, DocumentStore, Retriever, Generator # 初始化组件实例化对象 document_store = DocumentStore() retriever = Retriever(document_store=document_store) generator = Generator() def rag_pipeline(user_query): # 将用户输入转为向量形式 query_vector = retriever.encode_text(user_query) # 在向量数据库中搜索相关文档 retrieved_docs = document_store.search(query_vector) # 利用检索到的结果辅助生成最终答复 response = generator.generate(retrieved_docs, user_query=user_query) return response ``` 此代码展示了如何创建一个简单的管道函数`rag_pipeline()`,它接收来自用户的询问字符串参数,并依次调用了编码器(`encode_text`)、搜索引擎(`search`)和服务端API接口(`generate`)三个主要功能模块完成整个流程的操作[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值