前言
今天我们将探讨一篇RAG的论文,主题是大模型的非参数化持续学习框架——HippoRAG 2。该研究针对大模型在吸收新知识和避免灾难性遗忘方面的挑战,提出了一种新的方法,模拟人类长期记忆的动态性和关联性。HippoRAG 2在事实记忆、语义理解和关联记忆任务上的表现好于标准检索增强生成(RAG)方法,为大模型的持续学习提供了新的可能性。
1. 基本信息
- 论文标题《从RAG到记忆:大模型的非参数化持续学习》(From RAG to Memory: Non-Parametric Continual Learning for Large Language Models)
- 作者包括Bernal Jiménez Gutiérrez、Yiheng Shu、Weijian Qi、Sizhe Zhou和Yu Su,分别来自俄亥俄州立大学(The Ohio State University)和伊利诺伊大学厄巴纳-香槟分校(University of Illinois Urbana-Champaign)。
- GitHub地址为**https://github.com/OSU-NLP-Group/HippoRAG**。
2. 研究背景
近年来,大模型在自然语言处理领域取得了显著进展,涵盖从对话生成到复杂推理的多种任务。但在持续学习方面,大模型仍面临较大挑战。
其他持续学习方法通常分为三类:持续微调、模型编辑和RAG。
- 持续微调(Continual fine-tuning)涉及定期用新数据对大型语言模型进行训练。可以通过像持续预训练、指令微调和对齐微调等方法实现。虽然整合了新的语言模式和推理技能,但持续微调受到灾难性遗忘的影响,即随着新数据的引入而丢失先前学到的知识。此外,其计算费用使得频繁更新对现实世界的应用来说也不具备可操作性。
- 模型编辑技术(Model editing)提供了一个更轻量级的替代方案,通过直接修改模型中的特定参数来更新其知识。然而,这些更新高度局部化,对与更新相关联的信息影响很小。
- 检索增强生成(Retrieval-Augmented Generation)作为连续学习的一个可扩展且实用的替代方案。与其修改大型语言模型(LLM)本身,不如在推理时检索相关的外部信息,允许实时适应新知识。
总的来说,传统方法如持续微调和模型编辑试图通过更新参数来融入新知识,但往往因灾难性遗忘和高计算成本而受限。例如,实验表明,持续微调可能导致模型遗忘早期训练数据中的知识,而模型编辑的更新效果通常局限于局部,难以全面关联相关信息。检索增强生成(RAG)因其非参数化特性成为解决这一问题的热门方案,通过在推理时检索外部信息,避免直接修改模型参数。但标准RAG依赖向量检索,难以捕捉人类长期记忆中的语义理解和关联性,特别是在处理多跳推理或长篇语篇时表现不足。
针对这些局限性,近年来的研究提出了多种结构增强的RAG方法。例如,RAPTOR通过生成摘要整合信息,GraphRAG则利用知识图谱(KG)增强检索过程。尽管这些方法在语义理解或关联性任务上有所改进,但实验表明,它们在基本事实记忆任务上的性能下降,未能实现全面的记忆能力。HippoRAG 2的研究动机源于此,旨在设计一种框架,既能保持事实记忆的准确性,又能提升语义理解和关联记忆的深度,从而更接近人类长期记忆的动态特性。
GraphRAG是一种利用知识图谱增强检索增强生成(RAG)的方法,旨在通过结构化数据提升大模型的全局理解和推理能力。该方法通过大模型从源文档中提取实体、关系和声明,构建一个实体知识图谱。这种图结构不仅捕捉了实体间的直接关系,还通过社区检测技术识别出实体群组,生成社区摘要以提供高层次的语义信息。在检索阶段,GraphRAG利用图的结构信息进行上下文感知的检索,能够处理需要跨整个数据集进行信息汇总的复杂查询。相较于传统的RAG方法,GraphRAG在处理全局性问题时表现出色,能够生成更连贯和全面的回答,特别适用于需要深入语义理解的场景。
LightRAG是一种将图结构融入文本索引和检索过程的RAG系统,旨在提升大模型在处理复杂查询时的效率和准确性。该方法采用双层检索框架,结合低级和高级知识发现,增强了信息检索的全面性。通过将图结构与向量表示相结合,LightRAG能够高效检索相关实体及其关系,显著提高响应速度,同时保持上下文的相关性。此外,LightRAG引入了增量更新算法,确保系统能够及时整合新数据,适应快速变化的数据环境。实验表明,LightRAG在多个领域的数据集上超越了传统RAG和GraphRAG,尤其在处理大规模语料库和复杂查询时表现出色,提供了更准确和多样化的回答。
3. 方法(重点内容)
HippoRAG 2的提出源于标准RAG和现有改进方法在模拟人类记忆方面的不足。标准RAG依赖向量检索,虽然简单高效,但无法处理复杂的上下文关联;而结构增强方法虽有所进步,但牺牲了事实记忆的性能。基于此,HippoRAG 2在前作HippoRAG的基础上,结合个性化PageRank(PPR)算法、深入的段落集成和有效的在线大模型使用,构建了一个更强大的非参数化持续学习框架。这一框架通过离线索引和在线检索两个阶段实现,其设计灵感来源于人类大脑的神经机制。
离线索引
在离线索引阶段,HippoRAG 2首先利用大模型从每个段落中提取开放三元组(如(subject, relation, object)),并将其整合到一个无模式的开放KG中。KG包含两类节点:
- 短语节点(phrase nodes),代表概念;
- 段落节点(passage nodes),保留上下文信息。
此外,通过编码器检测短语间的同义关系并添加同义边(synonym edges),实现跨段落的信息互联。段落节点通过"contains"边与从中提取的短语节点相连。这种设计借鉴了大脑的密集与稀疏编码理论,其中短语节点类似稀疏编码,提供简洁的概念表示,而段落节点类似密集编码,保留丰富的上下文细节。最终,KG整合了概念的原子性和上下文的全面性,为后续检索奠定了基础。
在线检索
在线检索是HippoRAG 2的核心,分为以下步骤:
- 通过"Query to Triple"过程,编码器将查询与KG中的三元组匹配,识别潜在种子节点。与HippoRAG依赖NER(命名实体识别)不同,HippoRAG 2直接匹配整个查询,捕获更丰富的上下文。
- 通过"Recognition Memory"机制,大模型过滤检索到的三元组,仅保留与查询高度相关的部分,模拟人类记忆中的识别过程,减少噪声干扰。
- 利用个性化PageRank(PPR)算法在KG上进行上下文感知检索。PPR通过随机游走计算节点的重要性,公式如下:
其中,是节点的PageRank分数,是阻尼因子(通常设为0.5),是连接到的节点集合,是的出度。PPR通过种子节点的个性化初始化,发现多跳关联的段落。 - 根据PageRank分数对段落排序,选出得分最高的段落用于下游任务。
与现有方法的对比
与标准RAG相比,HippoRAG 2通过KG和PPR实现了关联性推理,而非仅依赖向量相似性。与GraphRAG等方法不同,其KG直接辅助检索而非扩展语料库,避免了生成噪声的干扰。相较于HippoRAG,HippoRAG 2通过段落节点的整合和识别记忆机制,显著提升了上下文感知能力。
4. 实验与发现
HippoRAG 2的实验在多个基准数据集上进行,包括:
- 简单QA任务:NaturalQuestions、PopQA;
- 多跳QA任务:MuSiQue、2Wiki、HotpotQA、LV-Eval;
- 语篇理解任务:NarrativeQA。
这些数据集覆盖事实记忆、语义理解和关联记忆三个维度,样本数量从124到1000不等,语料库段落数在4111到22849之间(详见论文Table 1)。评估指标包括检索任务的Recall@5和QA任务的F1分数,实验使用Llama-3.3-70B-Instruct作为提取和过滤模型,NV-Embed-v2作为检索器,确保结果的可重复性。
实验表明,HippoRAG 2在所有基准上均好于基线方法。以下是部分关键数据(论文Table 2和Table 3):
- 在简单QA任务中,HippoRAG 2在NaturalQuestions上的F1分数为63.3,PopQA为56.2,略高于NV-Embed-v2的61.9和55.7;
- 在多跳QA任务中,其在MuSiQue上的Recall@5为74.7(比NV-Embed-v2高5.0%),2Wiki为90.4(高13.9%),HotpotQA为96.3;
- 在语篇理解任务NarrativeQA上,F1分数达25.9,表现最好。
这些数据表明,HippoRAG 2在保持事实记忆能力的同时,显著提升了关联性和语义理解能力。
进一步分析显示,HippoRAG 2的优越性具有统计显著性。例如,在减少知识泄漏的挑战性数据集LV-Eval上,其F1分数为12.9,远高于NV-Embed-v2的7.8,凸显了其在复杂场景中的鲁棒性。对比HippoRAG,其改进版本在多跳任务上的提升尤为明显,验证了方法设计的有效性。
5. 结论与展望
HippoRAG 2通过整合个性化PageRank算法、段落节点和识别记忆机制,成功构建了一个接近人类长期记忆的RAG框架。其核心贡献在于实现了事实、语义和关联记忆的全面提升,为大模型的非参数化持续学习提供了新范式。实验表明,该框架在多种任务中表现出色,尤其在多跳推理和语篇理解方面具有显著优势
HippoRAG 2的研究方向值得进一步探索。例如,将episodic memory融入框架,可能实现对话中的动态记忆能力,推动大模型在长时交互中的应用。此外,结合领域自适应技术,HippoRAG 2有望在特定场景(如法律、医疗)中展现更大潜力,为AI的实用化迈出重要一步。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓