数学分析(六)-微分中值定理及其应用05:函数的凸性与拐点

§ 5 函数的凸性与拐点
读者已经熟悉函数 f ( x ) = x 2 f(x)=x^{2} f(x)=x2 f ( x ) = x f(x)=\sqrt{x} f(x)=x 的图像.
它们不同的特点是: 曲线 y = x 2 y=x^{2} y=x2 上任意两点间的弧段总在这两点连线的下方;
而曲线 y = x y=\sqrt{x} y=x 则相反,任意两点间的弧段总在这两点连线的上方.
我们把具有前一种特性的曲线称为凸的,
相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.
定义 1 设 f f f 为定义在区间 I I I 上的函数, 若对 I I I 上的任意两点
x 1 , x 2 x_{1}, x_{2} x1,x2 和任意实数 λ \lambda λ ∈ ( 0 , 1 ) \in(0,1) (0,1), 总有
f ( λ x 1 + ( 1 − λ ) x 2 ) ⩽ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) , f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2),
则称 f f f I I I 上的凸函数. 反之, 如果总有
f ( λ x 1 + ( 1 − λ ) x 2 ) ⩾ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) , f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2),
则称 f f f I I I 上的凹函数.
如果 (1)、(2) 中的不等式改为严格不等式,
则相应的函数称为严格凸函数和严格凹函数.
图 6-12 中的 (a) 和 (b) 分别是凸函数和凹函数的几何形状, 其中
x = λ x 1 + ( 1 − x=\lambda x_{1}+(1- x=λx1+(1 ג)
x 2 , A = f ( x 1 ) , B = f ( x 2 ) , C = λ A + ( 1 − λ ) B x_{2}, A=f\left(x_{1}\right), B=f\left(x_{2}\right), C=\lambda A+(1-\lambda) B x2,A=f(x1),B=f(x2),C=λA+(1λ)B.
容易证明: 若 − f -f f 为区间 I I I 上的凸函数, 则 f f f 为区间 I I I 上的凹函数.
因此, 今后只需讨论凸函数的性质即可.
引理 f f f I I I 上的凸函数的充要条件是: 对于 I I I 上的任意三点
x 1 < x 2 < x 3 x_{1}<x_{2}<x_{3} x1<x2<x3, 总有
f ( x 2 ) − f ( x 1 ) x 2 − x 1 ⩽ f ( x 3 ) − f ( x 2 ) x 3 − x 2 . \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}} . x2x1f(x2)f(x1)x3x2f(x3)f(x2).
证 必要性 记 λ = x 3 − x 2 x 3 − x 1 \lambda=\frac{x_{3}-x_{2}}{x_{3}-x_{1}} λ=x3x1x3x2, 则
x 2 = λ x 1 + ( 1 − λ ) x 3 x_{2}=\lambda x_{1}+(1-\lambda) x_{3} x2=λx1+(1λ)x3. 由 f f f 的凸性知道
f ( x 2 ) = f ( λ x 1 + ( 1 − λ ) x 3 ) ⩽ λ f ( x 1 ) + ( 1 − λ ) f ( x 3 ) f\left(x_{2}\right)=f\left(\lambda x_{1}+(1-\lambda) x_{3}\right) \leqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{3}\right) f(x2)=f(λx1+(1λ)x3)λf(x1)+(1λ)f(x3)
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“186px”}
(a)
凸函数外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“186px”}
(b) 凹 函数
图 6-12
= x 3 − x 2 x 3 − x 1 f ( x 1 ) + x 2 − x 1 x 3 − x 1 f ( x 3 ) , =\frac{x_{3}-x_{2}}{x_{3}-x_{1}} f\left(x_{1}\right)+\frac{x_{2}-x_{1}}{x_{3}-x_{1}} f\left(x_{3}\right), =x3x1x3x2f(x1)+x3x1x2x1f(x3),
从而有
( x 3 − x 1 ) f ( x 2 ) ⩽ ( x 3 − x 2 ) f ( x 1 ) + ( x 2 − x 1 ) f ( x 3 ) , ( x 3 − x 2 ) f ( x 2 ) + ( x 2 − x 1 ) f ( x 2 ) ⩽ ( x 3 − x 2 ) f ( x 1 ) + ( x 2 − x 1 ) f ( x 3 ) . \begin{array}{c} \left(x_{3}-x_{1}\right) f\left(x_{2}\right) \leqslant\left(x_{3}-x_{2}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{3}\right), \\ \left(x_{3}-x_{2}\right) f\left(x_{2}\right)+\left(x_{2}-x_{1}\right) f\left(x_{2}\right) \leqslant\left(x_{3}-x_{2}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{3}\right) . \end{array} (x3x1)f(x2)(x3x2)f(x1)+(x2x1)f(x3),(x3x2)f(x2)+(x2x1)f(x2)(x3x2)f(x1)+(x2x1)f(x3).

整理后即得 ( 3 ) (3) (3) 式.
充分性 如图 6-13 所示, 在 I I I 上任取两点
x 1 , x 3 ( x 1 < x 3 ) x_{1}, x_{3}\left(x_{1}<x_{3}\right) x1,x3(x1<x3), 在 [ x 1 , x 3 ] \left[x_{1}, x_{3}\right] [x1,x3]
上任取一点 x 2 = λ x 1 + ( 1 − λ ) x 3 , λ ∈ ( 0 , 1 ) x_{2}=\lambda x_{1}+(1-\lambda) x_{3}, \lambda \in(0,1) x2=λx1+(1λ)x3,λ(0,1), 即
λ = x 3 − x 2 x 3 − x 1 \lambda=\frac{x_{3}-x_{2}}{x_{3}-x_{1}} λ=x3x1x3x2. 由必要性的推导逆过程, 可推得
f ( λ x 1 + ( 1 − λ ) x 3 ) ⩽ λ f ( x 1 ) + ( 1 − λ ) f ( x 3 ) , f\left(\lambda x_{1}+(1-\lambda) x_{3}\right) \leqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{3}\right), f(λx1+(1λ)x3)λf(x1)+(1λ)f(x3),
f f f I I I 上的凸函数.
同理可证, f f f I I I 上的凸函数的充要条件是: 对于 I I I 上任意三点
x 1 < x 2 < x 3 x_{1}<x_{2}<x_{3} x1<x2<x3, 有
f ( x 2 ) − f ( x 1 ) x 2 − x 1 ⩽ f ( x 3 ) − f ( x 1 ) x 3 − x 1 ⩽ f ( x 3 ) − f ( x 2 ) x 3 − x 2 . \begin{aligned} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} & \leqslant \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \\ & \leqslant \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}} . \end{aligned} x2x1f(x2)f(x1)x3x1f(x3)f(x1)x3x2f(x3)f(x2).
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“186px”}
图 6-13
注 如果 f ( x ) f(x) f(x) I I I 上的严格凸函数, 则不等式 (3) 和 (4) 中的
" ⩽ " " \leqslant " "" 可改为 “ < " “<" <".
定理 6.14 设 f f f 为区间 I I I 上的可导函数,则下述论断互相等价:
1 ∘ f 1^{\circ} f 1f I I I 上凸函数;
2 ∘ f ′ 2^{\circ} f^{\prime} 2f I I I 上的增函数;
3 ∘ 3^{\circ} 3 I I I 上的任意两点 x 1 , x 2 x_{1}, x_{2} x1,x2, 有
f ( x 2 ) ⩾ f ( x 1 ) + f ′ ( x 1 ) ( x 2 − x 1 ) . f\left(x_{2}\right) \geqslant f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) . f(x2)f(x1)+f(x1)(x2x1).
( 1 ∘ → 2 ∘ ) \left(1^{\circ} \rightarrow 2^{\circ}\right) (12) 任取 I I I 上两点
x 1 , x 2 ( x 1 < x 2 ) x_{1}, x_{2}\left(x_{1}<x_{2}\right) x1,x2(x1<x2) 及充分小的正数 h h h. 由于
x 1 − h < x 1 < x 2 < x 2 + h x_{1}-h<x_{1}<x_{2}<x_{2}+h x1h<x1<x2<x2+h, 根据 f f f 的凸性及引理有
f ( x 1 ) − f ( x 1 − h ) h ⩽ f ( x 2 ) − f ( x 1 ) x 2 − x 1 ⩽ f ( x 2 + h ) − f ( x 2 ) h . \frac{f\left(x_{1}\right)-f\left(x_{1}-h\right)}{h} \leqslant \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{f\left(x_{2}+h\right)-f\left(x_{2}\right)}{h} . hf(x1)f(x1h)x2x1f(x2)f(x1)hf(x2+h)f(x2).
f f f 是可导函数, 令 h → 0 + h \rightarrow 0^{+} h0+时可得
f ′ ( x 1 ) ⩽ f ( x 2 ) − f ( x 1 ) x 2 − x 1 ⩽ f ′ ( x 2 ) , f^{\prime}\left(x_{1}\right) \leqslant \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant f^{\prime}\left(x_{2}\right), f(x1)x2x1f(x2)f(x1)f(x2),
所以 f ′ f^{\prime} f I I I 上的递增函数.
( 2 ∘ → 3 ∘ ) \left(2^{\circ} \rightarrow 3^{\circ}\right) (23) 在以
x 1 , x 2 ( x 1 < x 2 ) x_{1}, x_{2}\left(x_{1}<x_{2}\right) x1,x2(x1<x2)
为端点的区间上,应用拉格朗日中值定理和 f ′ f^{\prime} f 递增条件, 有
f ( x 2 ) − f ( x 1 ) = f ′ ( ξ ) ( x 2 − x 1 ) ⩾ f ′ ( x 1 ) ( x 2 − x 1 ) . f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(\xi)\left(x_{2}-x_{1}\right) \geqslant f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) . f(x2)f(x1)=f(ξ)(x2x1)f(x1)(x2x1).
移项后即得 (5) 式成立,且当 x 1 > x 2 x_{1}>x_{2} x1>x2 时仍可得到相同结论.
( 3 ∘ → 1 ∘ ) \left(3^{\circ} \rightarrow 1^{\circ}\right) (31) x 1 , x 2 x_{1}, x_{2} x1,x2 I I I
上任意两点, x 3 = λ x 1 + ( 1 − λ ) x 2 , 0 < λ < 1 x_{3}=\lambda x_{1}+(1-\lambda) x_{2}, 0<\lambda<1 x3=λx1+(1λ)x2,0<λ<1. 由
3 ∘ 3^{\circ} 3, 并利用 x 1 − x_{1}- x1 x 3 = ( 1 − λ ) ( x 1 − x 2 ) x_{3}=(1-\lambda)\left(x_{1}-x_{2}\right) x3=(1λ)(x1x2)
x 2 − x 3 = λ ( x 2 − x 1 ) x_{2}-x_{3}=\lambda\left(x_{2}-x_{1}\right) x2x3=λ(x2x1), 有
f ( x 1 ) ⩾ f ( x 3 ) + f ′ ( x 3 ) ( x 1 − x 3 ) = f ( x 3 ) + ( 1 − λ ) f ′ ( x 3 ) ( x 1 − x 2 ) . f ( x 2 ) ⩾ f ( x 3 ) + f ′ ( x 3 ) ( x 2 − x 3 ) = f ( x 3 ) + λ f ′ ( x 3 ) ( x 2 − x 1 ) . \begin{array}{c} f\left(x_{1}\right) \geqslant f\left(x_{3}\right)+f^{\prime}\left(x_{3}\right)\left(x_{1}-x_{3}\right)=f\left(x_{3}\right)+(1-\lambda) f^{\prime}\left(x_{3}\right)\left(x_{1}-x_{2}\right) . \\ f\left(x_{2}\right) \geqslant f\left(x_{3}\right)+f^{\prime}\left(x_{3}\right)\left(x_{2}-x_{3}\right)=f\left(x_{3}\right)+\lambda f^{\prime}\left(x_{3}\right)\left(x_{2}-x_{1}\right) . \end{array} f(x1)f(x3)+f(x3)(x1x3)=f(x3)+(1λ)f(x3)(x1x2).f(x2)f(x3)+f(x3)(x2x3)=f(x3)+λf(x3)(x2x1).

分别用 λ \lambda λ 1 − λ 1-\lambda 1λ 乘上列两式并相加,便得
λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) ⩾ f ( x 3 ) = f ( λ x 1 + ( 1 − λ ) x 2 ) . \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geqslant f\left(x_{3}\right)=f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) . λf(x1)+(1λ)f(x2)f(x3)=f(λx1+(1λ)x2).
从而 f f f I I I 上的凸函数.
注意 论断 3 ∘ 3^{\circ} 3 的几何意义是: 曲线 y = f ( x ) y=f(x) y=f(x)
总是在它的任一切线的上方 (图 6-14). 这是可导凸函数的几何特征.
对于凹函数, 同样有类似于定理 6.14 的结论.
定理 6.15 设 f f f 为区间 I I I 上的二阶可导函数, 则在 I I I f f f 为凸 (凹)
函数的充要条件是
f ′ ′ ( x ) ⩾ 0 ( f ′ ′ ( x ) ⩽ 0 ) , x ∈ I . f^{\prime \prime}(x) \geqslant 0\left(f^{\prime \prime}(x) \leqslant 0\right), x \in I . f′′(x)0(f′′(x)0),xI.
这个定理的结论可由定理 6.3 和定理 6.14 推出.
例 1 讨论函数 f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx 的凸 (凹) 性区间.
解 由于 f ′ ′ ( x ) = − 2 x ( 1 + x 2 ) 2 f^{\prime \prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} f′′(x)=(1+x2)22x,
因而当 x ⩽ 0 x \leqslant 0 x0 时,
f ′ ′ ( x ) ⩾ f^{\prime \prime}(x) \geqslant f′′(x)外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“192px”}
图 6-14 0 ; x ⩾ 0 0 ; x \geqslant 0 0;x0 时, f ′ ′ ( x ) ⩽ 0 f^{\prime \prime}(x) \leqslant 0 f′′(x)0.
从而在 ( − ∞ , 0 ] (-\infty, 0] (,0] f f f 为凸函数, 在 [ 0 , + ∞ ) [0,+\infty) [0,+) f f f 为凹函数.
例 2 若函数 f f f 为定义在开区间 ( a , b ) (a, b) (a,b) 上的可导的凸 (凹) 函数, 则
x 0 ∈ ( a , b ) x_{0} \in(a, b) x0(a,b) f f f的极小 (大) 值点的充要条件是 x 0 x_{0} x0 f f f
的稳定点, 即 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f(x0)=0.
证 下面只证明 f f f 为凸函数的情形.
必要性已由费马定理给出,现在证明充分性.
由定理 6.14, 任取 ( a , b ) (a, b) (a,b) 上的一点 x ( ≠ x 0 ) x\left(\neq x_{0}\right) x(=x0), 它与
x 0 x_{0} x0 一起有
f ( x ) ⩾ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) . f(x) \geqslant f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) . f(x)f(x0)+f(x0)(xx0).
因为 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f(x0)=0, 故对任何 x ∈ ( a , b ) x \in(a, b) x(a,b), 总有
f ( x ) ⩾ f ( x 0 ) , f(x) \geqslant f\left(x_{0}\right), f(x)f(x0),
x 0 x_{0} x0 f f f ( a , b ) (a, b) (a,b) 上的极小值点 (而且为最小值点).
例 3 设 f ( x ) f(x) f(x) 为区间 ( a , b ) (a, b) (a,b) 上的凸函数, 不恒为常数. 证明: f ( x ) f(x) f(x)
不取最大值.
证 若不然, 可设 f ( x 0 ) f\left(x_{0}\right) f(x0) 是最大值. 由凸函数的定义, 对于任意
x 1 , x 2 ∈ ( a , b ) , x 1 < x_{1}, x_{2} \in(a, b), x_{1}< x1,x2(a,b),x1< x 0 < x 2 x_{0}<x_{2} x0<x2, 有
f ( x 0 ) ⩽ x 2 − x 0 x 2 − x 1 f ( x 1 ) + x 0 − x 1 x 2 − x 1 f ( x 2 ) f\left(x_{0}\right) \leqslant \frac{x_{2}-x_{0}}{x_{2}-x_{1}} f\left(x_{1}\right)+\frac{x_{0}-x_{1}}{x_{2}-x_{1}} f\left(x_{2}\right) f(x0)x2x1x2x0f(x1)+x2x1x0x1f(x2)
⩽ ( x 2 − x 0 x 2 − x 1 + x 0 − x 1 x 2 − x 1 ) f ( x 0 ) = f ( x 0 ) , \leqslant\left(\frac{x_{2}-x_{0}}{x_{2}-x_{1}}+\frac{x_{0}-x_{1}}{x_{2}-x_{1}}\right) f\left(x_{0}\right)=f\left(x_{0}\right), (x2x1x2x0+x2x1x0x1)f(x0)=f(x0),
从而得到 f ( x 0 ) = f ( x 1 ) = f ( x 2 ) f\left(x_{0}\right)=f\left(x_{1}\right)=f\left(x_{2}\right) f(x0)=f(x1)=f(x2).
f ( x ) f(x) f(x) 是常量函数, 矛盾.
注 若 f ( x ) f(x) f(x) 是区间 [ a , b ] [a, b] [a,b] 上的凸的连续函数,那么
f ( x ) ⩽ max ⁡ { f ( a ) , f ( b ) } . f(x) \leqslant \max \{f(a), f(b)\} . f(x)max{f(a),f(b)}.
例 4 求证 1 + x 2 ⩽ 2 x ⩽ 1 + x , x ∈ [ 0 , 1 ] 1+x^{2} \leqslant 2^{x} \leqslant 1+x, x \in[0,1] 1+x22x1+x,x[0,1].
证 设 f ( x ) = 1 + x 2 − 2 x , g ( x ) = 2 x − 1 − x f(x)=1+x^{2}-2^{x}, g(x)=2^{x}-1-x f(x)=1+x22x,g(x)=2x1x, 那么
f ′ ′ ( x ) = 2 − 2 x ( ln ⁡ 2 ) 2 ⩾ 0 , g ′ ′ ( x ) = 2 x ( ln ⁡ 2 ) 2 > 0. f^{\prime \prime}(x)=2-2^{x}(\ln 2)^{2} \geqslant 0, \quad g^{\prime \prime}(x)=2^{x}(\ln 2)^{2}>0 . f′′(x)=22x(ln2)20,g′′(x)=2x(ln2)2>0.
因此 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 均为 [ 0 , 1 ] [0,1] [0,1] 上的凸函数, 故由例 3 得
f ( x ) ⩽ max ⁡ { f ( 0 ) , f ( 1 ) } = 0 , g ( x ) ⩽ max ⁡ { g ( 0 ) , g ( 1 ) ∣ = 0. f(x) \leqslant \max \{f(0), f(1)\}=0, \quad g(x) \leqslant \max \{g(0), g(1) \mid=0 . f(x)max{f(0),f(1)}=0,g(x)max{g(0),g(1)∣=0.
由此推得所需的结果.
下例是定义 1 的一般情形.
5 \mathbf{5} 5 (延森 (Jensen) 不等式) 若 f f f [ a , b ] [a, b] [a,b] 上的凸函数,
则对任意 x i ∈ [ a , b ] , λ > 0 x_{i} \in[a, b], \lambda>0 xi[a,b],λ>0
( i = 1 , 2 , ⋯   , n ) , ∑ i = 1 n λ i = 1 (i=1,2, \cdots, n), \sum_{i=1}^{n} \lambda_{i}=1 (i=1,2,,n),i=1nλi=1, 有
f ( ∑ i = 1 n λ i x i ) ⩽ ∑ i = 1 n λ i f ( x i ) . f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leqslant \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) . f(i=1nλixi)i=1nλif(xi).
证 应用数学归纳法. 当 n = 2 n=2 n=2 时, 由定义 1 , 命题显然成立. 设 n = k n=k n=k
时命题成立. 即对任意 x 1 , x 2 , ⋯   , x k ∈ [ a , b ] x_{1}, x_{2}, \cdots, x_{k} \in[a, b] x1,x2,,xk[a,b]
α i > 0 , i = 1 , 2 , ⋯   , k , ∑ i = 1 k α i = 1 , \alpha_{i}>0, i=1,2, \cdots, k, \sum_{i=1}^{k} \alpha_{i}=1, αi>0,i=1,2,,k,i=1kαi=1,
都有
f ( ∑ i = 1 k α i x i ) ⩽ ∑ i = 1 k α i f ( x i ) . f\left(\sum_{i=1}^{k} \alpha_{i} x_{i}\right) \leqslant \sum_{i=1}^{k} \alpha_{i} f\left(x_{i}\right) . f(i=1kαixi)i=1kαif(xi).
现设 x 1 , x 2 , ⋯   , x k , x k + 1 ∈ [ a , b ] x_{1}, x_{2}, \cdots, x_{k}, x_{k+1} \in[a, b] x1,x2,,xk,xk+1[a,b]
λ i > 0 ( i = 1 , 2 , ⋯   , k + 1 ) , ∑ i = 1 k + 1 λ i = 1. \lambda_{i}>0(i=1,2, \cdots, k+1), \sum_{i=1}^{k+1} \lambda_{i}=1 . λi>0(i=1,2,,k+1),i=1k+1λi=1.
α i = λ i 1 − λ k + 1 , i = 1 , 2 , ⋯   , k \alpha_{i}=\frac{\lambda_{i}}{1-\lambda_{k+1}}, i=1,2, \cdots, k αi=1λk+1λi,i=1,2,,k,
∑ i = 1 k α i = 1 \sum_{i=1}^{k} \alpha_{i}=1 i=1kαi=1. 由数学归纳法假设可推得
f ( λ 1 x 1 + λ 2 x 2 + ⋯ + λ k x k + λ k + 1 x k + 1 ) = f ( ( 1 − λ k + 1 ) λ 1 x 1 + λ 2 x 2 + ⋯ + λ k x k 1 − λ k + 1 + λ k + 1 x k + 1 ) ⩽ ( 1 − λ k + 1 ) f ( α 1 x 1 + α 2 x 2 + ⋯ + α k x k ) + λ k + 1 f ( x k + 1 ) ⩽ ( 1 − λ k + 1 ) [ α 1 f ( x 1 ) + α 2 f ( x 2 ) + ⋯ + α k f ( x k ) ] + λ k + k f ( x k + 1 ) = ( 1 − λ k + 1 ) [ λ 1 1 − λ k + 1 f ( x 1 ) + λ 2 1 − λ k + 1 f ( x 2 ) + ⋯ + λ k 1 − λ k + 1 f ( x k ) ] + λ k + 1 f ( x k + 1 ) = ∑ k = 1 n λ i f ( x k ) . \begin{aligned} & f\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{k} x_{k}+\lambda_{k+1} x_{k+1}\right) \\ = & f\left(\left(1-\lambda_{k+1}\right) \frac{\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{k} x_{k}}{1-\lambda_{k+1}}+\lambda_{k+1} x_{k+1}\right) \\ \leqslant & \left(1-\lambda_{k+1}\right) f\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{k} x_{k}\right)+\lambda_{k+1} f\left(x_{k+1}\right) \\ \leqslant & \left(1-\lambda_{k+1}\right)\left[\alpha_{1} f\left(x_{1}\right)+\alpha_{2} f\left(x_{2}\right)+\cdots+\alpha_{k} f\left(x_{k}\right)\right]+\lambda_{k+k} f\left(x_{k+1}\right) \\ = & \left(1-\lambda_{k+1}\right)\left[\frac{\lambda_{1}}{1-\lambda_{k+1}} f\left(x_{1}\right)+\frac{\lambda_{2}}{1-\lambda_{k+1}} f\left(x_{2}\right)+\cdots+\frac{\lambda_{k}}{1-\lambda_{k+1}} f\left(x_{k}\right)\right]+ \\ & \lambda_{k+1} f\left(x_{k+1}\right)=\sum_{k=1}^{n} \lambda_{i} f\left(x_{k}\right) . \end{aligned} ==f(λ1x1+λ2x2++λkxk+λk+1xk+1)f((1λk+1)1λk+1λ1x1+λ2x2++λkxk+λk+1xk+1)(1λk+1)f(α1x1+α2x2++αkxk)+λk+1f(xk+1)(1λk+1)[α1f(x1)+α2f(x2)++αkf(xk)]+λk+kf(xk+1)(1λk+1)[1λk+1λ1f(x1)+1λk+1λ2f(x2)++1λk+1λkf(xk)]+λk+1f(xk+1)=k=1nλif(xk).
这就证明了对任何正整数 n ( ⩾ 2 ) n(\geqslant 2) n(2), 凸函数 f f f 总有不等式 ( 6 ) (6) (6)
成立.
注 如 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上严格凸, 则 ( 6 ) (6) (6) 式可为严格不等式,除非
x 1 = x 2 = ⋯ = x n x_{1}=x_{2}=\cdots=x_{n} x1=x2==xn.
例 6 证明不等式 ( a b c ) a + b + c 3 ⩽ a a b b c c (a b c)^{\frac{a+b+c}{3}} \leqslant a^{a} b^{b} c^{c} (abc)3a+b+caabbcc,
其中 a , b , c a, b, c a,b,c 均为正数.
证 设 f ( x ) = x ln ⁡ x , x > 0 f(x)=x \ln x, x>0 f(x)=xlnx,x>0. 由 f ( x ) f(x) f(x) 的一阶和二阶导数
f ′ ( x ) = ln ⁡ x + 1 , f ′ ′ ( x ) = 1 x , f^{\prime}(x)=\ln x+1, \quad f^{\prime \prime}(x)=\frac{1}{x}, f(x)=lnx+1,f′′(x)=x1,
可见, f ( x ) = x ln ⁡ x f(x)=x \ln x f(x)=xlnx x > 0 x>0 x>0 时为严格凸函数.依延森不等式有
f ( a + b + c 3 ) ⩽ 1 3 [ f ( a ) + f ( b ) + f ( c ) ] , f\left(\frac{a+b+c}{3}\right) \leqslant \frac{1}{3}[f(a)+f(b)+f(c)], f(3a+b+c)31[f(a)+f(b)+f(c)],
从而
a + b + c 3 ln ⁡ a + b + c 3 ⩽ 1 3 ( a ln ⁡ a + b ln ⁡ b + c ln ⁡ c ) , \frac{a+b+c}{3} \ln \frac{a+b+c}{3} \leqslant \frac{1}{3}(a \ln a+b \ln b+c \ln c), 3a+b+cln3a+b+c31(alna+blnb+clnc),

( a + b + c 3 ) a + b + c ⩽ a a b b c c . \left(\frac{a+b+c}{3}\right)^{a+b+c} \leqslant a^{a} b^{b} c^{c} . (3a+b+c)a+b+caabbcc.
又因 a b c 3 ⩽ a + b + c 3 \sqrt[3]{a b c} \leqslant \frac{a+b+c}{3} 3abc 3a+b+c, 所以
( a b c ) a + s + e 3 ⩽ a a b b c c . (a b c)^{\frac{a+s+e}{3}} \leqslant a^{a} b^{b} c^{c} . (abc)3a+s+eaabbcc.
例 7 设 A , B , C A, B, C A,B,C 是三角形的三个内角,证明
sin ⁡ A + sin ⁡ B + sin ⁡ C ⩽ 3 2 3 . \sin A+\sin B+\sin C \leqslant \frac{3}{2} \sqrt{3} . sinA+sinB+sinC233 .
证设 f ( x ) = sin ⁡ x , x ∈ [ 0 , π ] f(x)=\sin x, x \in[0, \pi] f(x)=sinx,x[0,π]. 由于
f ′ ′ ( x ) = − sin ⁡ x < 0 f^{\prime \prime}(x)=-\sin x<0 f′′(x)=sinx<0, 因而 f ( x ) f(x) f(x) 是严格凹函数.
由延森不等式,
sin ⁡ A + sin ⁡ B + sin ⁡ C ⩽ 3 sin ⁡ A + B + C 3 = 3 2 3 . \sin A+\sin B+\sin C \leqslant 3 \sin \frac{A+B+C}{3}=\frac{3}{2} \sqrt{3} . sinA+sinB+sinC3sin3A+B+C=233 .
等号成立当且仅当 A = B = C = π 3 A=B=C=\frac{\pi}{3} A=B=C=3π.
例 8 设 f f f 为开区间 I I I 上的凸 (凹) 函数, 证明 f f f I I I 上任一点
x 0 x_{0} x0 都存在左、右导数.
证 下面只证凸函数 f f f 在点 x 0 x_{0} x0 存在右导数, 同理可证也存在左导数和
f f f 为凹函数的情形.
0 < h 1 < h 2 0<h_{1}<h_{2} 0<h1<h2, 则对 x 0 < x 0 + h 1 < x 0 + h 2 x_{0}<x_{0}+h_{1}<x_{0}+h_{2} x0<x0+h1<x0+h2 (这里取充分小的
h 2 h_{2} h2, 使 x 0 + x_{0}+ x0+ h 2 ∈ I ) \left.h_{2} \in I\right) h2I), 由引理中的 (4) 式有
f ( x 0 + h 1 ) − f ( x 0 ) h 1 ⩽ f ( x 0 + h 2 ) − f ( x 0 ) h 2 . \frac{f\left(x_{0}+h_{1}\right)-f\left(x_{0}\right)}{h_{1}} \leqslant \frac{f\left(x_{0}+h_{2}\right)-f\left(x_{0}\right)}{h_{2}} . h1f(x0+h1)f(x0)h2f(x0+h2)f(x0).
F ( h ) = f ( x 0 + h ) − f ( x 0 ) h F(h)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} F(h)=hf(x0+h)f(x0),
故由上式可见 F F F 为增函数.任取 x ′ ∈ I x^{\prime} \in I xI
x ′ ⟨ x 0 x^{\prime}\left\langle x_{0}\right. xx0, 则对任何 h > h> h> 0 , 只要
x 0 + h ∈ I x_{0}+h \in I x0+hI, 也有
f ( x 0 ) − f ( x ′ ) x 0 − x ′ ⩽ f ( x 0 + h ) − f ( x 0 ) h = F ( h ) . \frac{f\left(x_{0}\right)-f\left(x^{\prime}\right)}{x_{0}-x^{\prime}} \leqslant \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=F(h) . x0xf(x0)f(x)hf(x0+h)f(x0)=F(h).
由于上式左端是一个定数, 因而函数 F ( h ) F(h) F(h) h > 0 h>0 h>0 上有下界. 根据定理 3.10
, 极限 F ( h ) F(h) F(h)存在, 即 f + ′ ( x 0 ) f_{+}^{\prime}\left(x_{0}\right) f+(x0) 存在.
定义 2 设曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0))
处有穿过曲线的切线. 且在切点近旁,
曲线在切线的两侧分别是严格凸和严格凹的, 这时称点
( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 为曲线 y = f ( x ) y=f(x) y=f(x) 的拐点.
由定义可见, 拐点正是凸和凹曲线的分界点, 如图 6-15 中的点 M M M.
例 1 中的点 ( 0 , 0 ) (0,0) (0,0) y = arctan ⁡ x y=\arctan x y=arctanx 的拐点. 容易验证: 正弦曲线
y = sin ⁡ x y=\sin x y=sinx 有拐点 ( k π , 0 ) , k (k \pi, 0), k (,0),k
为整数.外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“222px”}
图 6-15
读者容易证明下述两个有关拐点的定理.
定理6.16 若 f f f x 0 x_{0} x0 二阶可导, 则
( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 为曲线 y = f ( x ) y=f(x) y=f(x)
的拐点的必要条件是 f ′ ′ ( x 0 ) = 0 f^{\prime \prime}\left(x_{0}\right)=0 f′′(x0)=0.
定理 6.17 设 f f f x 0 x_{0} x0 可导, 在某邻域 U ∘ ( x 0 ) U^{\circ}\left(x_{0}\right) U(x0)
上二阶可导. 若在 U + ∘ ( x 0 ) U_{+}^{\circ}\left(x_{0}\right) U+(x0)
U − ∘ ( x 0 ) U_{-}^{\circ}\left(x_{0}\right) U(x0) f ′ ′ ( x ) f^{\prime \prime}(x) f′′(x) 的符号相反,
( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 为曲线 y = f ( x ) y=f(x) y=f(x) 的拐点.
必须指出: 若 ( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 是曲线 y = f ( x ) y=f(x) y=f(x)
的一个拐点, y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的导数不一定存在. 请考察函数
y = x 3 y=\sqrt[3]{x} y=3x x = 0 x=0 x=0 的情况.
1. 确定下列函数的凸性区间与拐点:
(1) y = 2 x 3 − 3 x 2 − 36 x + 25 y=2 x^{3}-3 x^{2}-36 x+25 y=2x33x236x+25;
(2) y = x + 1 x y=x+\frac{1}{x} y=x+x1;
(3) y = x 2 + 1 x y=x^{2}+\frac{1}{x} y=x2+x1;
(4) y = ln ⁡ ( x 2 + 1 ) y=\ln \left(x^{2}+1\right) y=ln(x2+1);
(5) y = 1 1 + x 2 y=\frac{1}{1+x^{2}} y=1+x21.
2. 问 a a a b b b 为何值时, 点 ( 1 , 3 ) (1,3) (1,3) 为曲线 y = a x 3 + b x 2 y=a x^{3}+b x^{2} y=ax3+bx2
的拐点?
3. 证明:
(1) 若 f f f 为凸函数, λ \lambda λ 为非负实数, 则 λ f \lambda f λf 为凸函数;
(2) 若 f , g f, g f,g 均为凸函数, 则 f + g f+g f+g 为凸函数;
(3) 若 f f f 为区间 I I I 上凸函数, g g g J ⊃ f ( I ) J \supset f(I) Jf(I) 上凸增函数, 则
g g g of 为 I I I 上凸函数.
4. 设 f f f 为区间 I I I 上严格凸函数. 证明: 若 x 0 ∈ I x_{0} \in I x0I f f f
的极小值点, 则 x 0 x_{0} x0 f f f I I I 上唯一的极小值点.
5. 应用凸函数概念证明如下不等式:
(1) 对任意实数 a , b a, b a,b, 有
e n + b 2 ⩽ 1 2 ( e a + e A ) \mathrm{e}^{\frac{n+b}{2}} \leqslant \frac{1}{2}\left(\mathrm{e}^{a}+\mathrm{e}^{A}\right) e2n+b21(ea+eA)
:
(2) 对任何非负实数 a , b a, b a,b, 有
2 arctan ⁡ ( a + b 2 ) ⩾ arctan ⁡ a + arctan ⁡ b 2 \arctan \left(\frac{a+b}{2}\right) \geqslant \arctan a+\arctan b 2arctan(2a+b)arctana+arctanb.
6. 证明: sin ⁡ π x ⩽ π 2 2 x ( 1 − x ) \sin \pi x \leqslant \frac{\pi^{2}}{2} x(1-x) sinπx2π2x(1x), 其中
x ∈ [ 0 , 1 ] x \in[0,1] x[0,1].
7. 证明: 若 f , g f, g f,g 均为区间 I I I 上凸函数, 则 F ( x ) = max ⁡ { f ( x ) , g ( x ) } F(x)=\max \{f(x), g(x)\} F(x)=max{f(x),g(x)}
也是 I I I 上凸函数.
8. 证明: (1) f f f 为区间 I I I 上凸函数的充要条件是对 I I I 上任意三点
x 1 < x 2 < x 3 x_{1}<x_{2}<x_{3} x1<x2<x3, 恒有
Δ = ∣ 1 x 1 f ( x 1 ) 1 x 2 f ( x 2 ) 1 x 3 f ( x 3 ) ∣ ⩾ 0 ; \Delta=\left|\begin{array}{lll} 1 & x_{1} & f\left(x_{1}\right) \\ 1 & x_{2} & f\left(x_{2}\right) \\ 1 & x_{3} & f\left(x_{3}\right) \end{array}\right| \geqslant 0 ; Δ= 111x1x2x3f(x1)f(x2)f(x3) 0;
(2) f f f 为严格凸函数的充要条件是 Δ > 0 \Delta>0 Δ>0.
9. 应用延森不等式证明:
(1) 设 a i > 0 ( i = 1 , 2 , ⋯   , n ) a_{i}>0(i=1,2, \cdots, n) ai>0(i=1,2,,n), 有
n 1 a 1 + 1 a 2 + ⋯ + 1 a n ⩽ a 1 a 2 ⋯ a n n ⩽ a 1 + a 2 + ⋯ + a n n ; \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}} \leqslant \sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leqslant \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} ; a11+a21++an1nna1a2an na1+a2++an;
(2) 设 a i , b i > 0 ( i = 1 , 2 , ⋯   , n ) a_{i}, b_{i}>0(i=1,2, \cdots, n) ai,bi>0(i=1,2,,n), 有
∑ i = 1 n a i b i ⩽ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q , \sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}, i=1naibi(i=1naip)p1(i=1nbiq)q1,
其中 p > 1 , q > 1 , 1 p + 1 q = 1 p>1, q>1, \frac{1}{p}+\frac{1}{q}=1 p>1,q>1,p1+q1=1.
10. 求证: 圆内接 n n n 边形的面积最大者必为正 n n n 边形 ( n ⩾ 3 ) (n \geqslant 3) (n3).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值