04微分中值定理及其应用

微分中值定理

定理1 费马定理

如果函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导,且在 x 0 x_0 x0处取得极值(极大值或极小值),那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

定理2 罗尔定理

在这里插入图片描述

若1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续;

​ ①m=M,最大值等于最小值, f ( x ) f(x) f(x)为一条直线

​ ②m<M,最小值小于最大值,那么至少有一点不等于端点

​ 2) f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导;

​ 3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

定理3 拉格朗如中值定理

在这里插入图片描述

若1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续;

​ 2) f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导;

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使
f ( b ) − f ( a ) b − a = f ′ ( ξ ) {f(b)-f(a) \over b-a}=f'(\xi) baf(b)f(a)=f(ξ)


f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a) =f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

定理4 柯西中值定理

若1) f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上连续;

​ 2) f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( a , b ) (a,b) (a,b)上可导,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) {f(b)-f(a) \over g(b)-g(a)}={f'(\xi) \over g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
【注】可以把 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)组合成参数方程 { x = f ( t ) y = g ( t ) \begin{cases}x=f(t) \\ y=g(t) \end{cases} {x=f(t)y=g(t)

在这里插入图片描述

柯 西 → x = x 拉 格 朗 日 → f ( a ) = f ( b ) 罗 尔 柯西 \xrightarrow{x=x} 拉格朗日 \xrightarrow{f(a)=f(b)} 罗尔 西x=x f(a)=f(b)

【链接】三大微分定理

导数的应用

1. 函数的单调性

定义

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导。

​ 1)若在 ( a , b ) (a,b) (a,b) f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调增;

​ 2)若在 ( a , b ) (a,b) (a,b) f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( z ) f(z) f(z) [ a , b ] [a,b] [a,b]上单调减;

求法

首先求出 f ( x ) f(x) f(x)的驻点及不可导点即 f ′ ( x ) = 0 和 f ′ ( x ) 不 存 在 的 点 f'(x)=0和f'(x)不存在的点 f(x)=0f(x)(只有驻点与不可导的点肯可

能是单调区间的分界点);然后用上述点由小到大将定义域分成若干个互不相交的子区间;

最后讨论 f ′ ( x ) f'(x) f(x)在每个子区间内的符号(当 f ′ ( x ) f'(x) f(x)在子区间连续时,即子区间内任一点的符号)。

2. 函数的极值

定义

∃ ξ > 0 \exist \xi >0 ξ>0,使得

∀ x ∈ U ˚ ( x 0 , δ ) \forall x \in \mathring{U}(x_0, \delta) xU˚(x0,δ)恒有 f ( x ) ≥ f ( x 0 ) f(x)\geq f(x_0) f(x)f(x0),则称 f ( x ) f(x) f(x) x 0 x_0 x0极小值

∀ x ∈ U ˚ ( x 0 , δ ) \forall x \in \mathring{U}(x_0, \delta) xU˚(x0,δ)恒有 f ( x ) ≤ f ( x 0 ) f(x)\leq f(x_0) f(x)f(x0),则称 f ( x ) f(x) f(x) x 0 x_0 x0极大值

【注】一个函数的升降分界点是它的极值点,但极值点未必是其升降分界点。即:若点

x = x 0 x=x_0 x=x0 f ( x ) f(x) f(x)的极小(大)值,不一定存在 x = x 0 x=x_0 x=x0的某领域 ( x 0 − δ , x 0 + δ ) (x_0-\delta, x_0+\delta) (x0δ,x0+δ)使得 f ( x ) f(x) f(x)

( x 0 − δ , x 0 ] ↘ ( ↗ ) , 在 [ x 0 . x 0 + δ ) ↘ ( ↗ ) (x_0-\delta,x_0]\searrow(\nearrow),在[x_0.x_0+\delta)\searrow(\nearrow) (x0δ,x0]()[x0.x0+δ)()

极值的必要条件

f ( x ) f(x) f(x) x 0 x_0 x0处可导,且在 x 0 x_0 x0处取得极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0 f ′ ( x 0 ) 不 存 在 f'(x_0)不存在 f(x0)

【注】导数=0的点不一定是极值点,如 f ( x ) = x 3 f(x)=x^3 f(x)=x3,显然 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,但是 f ( x ) f(x) f(x)在0点不取

得极值。

驻点:导数=0的点称为驻点。

极 值 点 ↚ x 3 ̸ → ∣ x ∣ 驻 点 极值点 \overset{ \not \xrightarrow{|x|}}{\underset{x^3}{\not \leftarrow}} 驻点 x3x

如果加上前提条件, f ( x ) f(x) f(x)可导,则 极 值 点 ⟵̸ x 3 ⟶ 驻 点 极值点 \quad \overset{ \longrightarrow}{\underset{x^3}{\not \longleftarrow}} \quad 驻点 x3

于是,可能的极值点 { f ′ ( x 0 ) = 0 f ′ ( x 0 ) 不 存 在 ( 前 提 条 件 是 函 数 连 续 ) \begin{cases}f'(x_0)=0 \\ f'(x_0)不存在(前提条件是函数连续) \end{cases} {f(x0)=0f(x0)

极值的第一充分条件

f ( x ) f(x) f(x) U ˚ ( x 0 , δ ) \mathring{U}(x_0, \delta) U˚(x0,δ)内可导,且 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0(或 f ( x ) f(x) f(x) x 0 x_0 x0处连续)

(1)若 x < x 0 x<x_0 x<x0时, f ′ ( x ) ≥ 0 f'(x) \geq 0 f(x)0 x > x 0 x>x_0 x>x0时, f ′ ( x ) ≤ 0 f'(x) \leq 0 f(x)0,则 f f f x 0 x_0 x0处取极大值

(2)若 x < x 0 x<x_0 x<x0时, f ′ ( x ) ≤ 0 f'(x) \leq 0 f(x)0 x > x 0 x>x_0 x>x0时, f ′ ( x ) ≥ 0 f'(x) \geq 0 f(x)0,则 f f f x 0 x_0 x0处取极小值

(3)若 f ′ ( x ) f'(x) f(x) x 0 x_0 x0的两侧不变号,则 f f f x 0 x_0 x0无极值。

【注】可以判断驻点和导数不存在的点。

极值的第二充分条件

f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 f'(x_0)=0, f''(x_0) \neq0 f(x0)=0,f(x0)=0

(1)当 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f(x0)<0 f ( x ) f(x) f(x) x 0 x_0 x0处取极大值

(2)当 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f(x0)>0 f ( x ) f(x) f(x) x 0 x_0 x0处取极小值

【注】当 f ′ ( x ) = 0 , f ′ ′ ( x ) = 0 时 f'(x)=0, f''(x)=0时 f(x)=0,f(x)=0 f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0处既可能有极大值,也可能有极小值,

也能没有极值。可用函数 − x 4 , x 4 , x 3 -x^4, x^4, x^3 x4,x4,x3在点 x = 0 x=0 x=0处为例。

在这里插入图片描述

极值的第三充分条件

iShot2020-09-16下午04.39.35

极值点的求法

首先求出驻点和不可导点(即 f ′ ( x ) = 0 和 f ′ ( x ) 不 存 在 的 点 f'(x)=0和f'(x)不存在的点 f(x)=0f(x));然后考察这些点两侧附近

f ′ ( x ) f'(x) f(x)的符号,有极值点的第一充分条件判别法得出结论。

f ( x ) f(x) f(x)二阶导数好求,且二阶导数在驻点处不为零时,可用极值第二充分判别法来判定。

有些情形可按极值的定义来判别得出结论。

3. 函数的最大最小值

(1)求连续函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最值

​ 第一步:求出 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内的驻点和不可导的点 x 1 , x 2 , ⋯   , x n x_1,x_2, \cdots,x_n x1,x2,,xn

​ 第二步:求出函数值 f ( x 1 ) , f ( x 2 ) , ⋯   , f ( x n ) , f ( a ) , f ( b ) f(x_1),f(x_2), \cdots,f(x_n),f(a),f(b) f(x1),f(x2),,f(xn),f(a),f(b)

​ 第三步;比较以上各点的函数值

​ 【注】若连续函数 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内仅有唯一极值点,如果是极大值,那这点就是最大

值,如果是极小值,那这点就是最小值。

(2)最大最小的应用题

​ 第一步:建立目标函数

​ 第二步:计算

4. 曲线的凹凸性与拐点

凹凸性

定义1

在这里插入图片描述

f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f({x_1+x_2 \over 2})<{f(x_1)+f(x_2) \over 2} f(2x1+x2)<2f(x1)+f(x2)

f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f({x_1+x_2 \over 2})>{f(x_1)+f(x_2) \over 2} f(2x1+x2)>2f(x1)+f(x2)

定义2

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,若对 ∀ x , x 0 ∈ ( a , b ) \forall x,x_0 \in (a,b) x,x0(a,b) x ≠ x 0 x \neq x_0 x=x0恒有
f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) > ( < ) f ( x ) f(x_0)+f'(x_0)(x-x_0)>(<)f(x) f(x0)+f(x0)(xx0)>(<)f(x)
则称 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上是凸(凹)的。

几何意义

y = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) y=f(x_0)+f'(x_0)(x-x_0) y=f(x0)+f(x0)(xx0)是曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))处的切线方程。

若曲线 y = f ( x ) ( a < x < b ) y=f(x)(a<x<b) y=f(x)(a<x<b)在任意点处的切线除该点外总在曲线的上方(下方),则该曲

线是凸(凹)的,反之亦然。

iShot2020-09-22上午11.05.12

判定

若在区间 I I I f ′ ′ ( x > 0 ) ( f ′ ′ ( x < 0 ) ) f''(x>0)(f''(x<0)) f(x>0)(f(x<0)),则曲线 y = f ( x ) y=f(x) y=f(x) I I I上是凹(凸)的。

几何意义

[ a , b ] [a,b] [a,b]上的的连续曲线 y = f ( x ) y=f(x) y=f(x) ( a , b ) (a,b) (a,b)的切线斜率是单调减少(增加)的,则 f ( x ) f(x) f(x)

[ a , b ] [a,b] [a,b]为凸(凹)的,反之亦然。

在这里插入图片描述

凹凸区间求法

(1)求出 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0的根及 f ′ ′ ( x ) f''(x) f(x)不存在的 f ( x ) f(x) f(x)的连续点;

(2)用上述各点由小到大将 f ( x ) f(x) f(x)的定义域分成若干个互不相交的子区间,讨论 f ′ ′ ( x ) f''(x) f(x)在每

个子区间内的符号,一般用列表法。

拐点

定义: y = f ( x ) y=f(x) y=f(x)定义于区间 I I I上,若 f ( x 0 ) f(x_0) f(x0) x = x 0 x=x_0 x=x0两侧凹凸性不同,称 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲

线 y = f ( x ) y=f(x) y=f(x)的拐点。

判别法

二阶等于0或不存在的点。(必要条件)

二阶等于0(或不存在)左右变号。(充分条件)

f ( x ) f(x) f(x)三阶可导,且 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f(x0)=0,但 f ′ ′ ′ ( x ) ≠ 0 f'''(x) \neq 0 f(x)=0,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线 y = f ( x ) y=f(x) y=f(x)的拐点。

【注1】二阶导数等于0是拐点存在的必要条件。

【注2】二阶导数为0的点是一阶导数取得极值的点。

求法

(1)求出 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0的点及 f ′ ′ ( x ) f''(x) f(x)不存在的 f ( x ) f(x) f(x)的连续点

(2)考察这些点两侧近处 f ′ ′ ( x ) f''(x) f(x)的符号来判断。当 f ′ ′ ′ ( x ) f'''(x) f(x)好求,且 f ′ ′ ′ ( x ) f'''(x) f(x)在这点不为零时

也可判断得到结论。

5. 曲线的渐近线

1)若 lim ⁡ x → ∞ f ( x ) = A ( lim ⁡ x → − ∞ f ( x ) = A 或 lim ⁡ x → + ∞ f ( x ) = A ) \lim_{x \to \infty}f(x)=A(\lim_{x \to -\infty}f(x)=A或\lim_{x \to +\infty}f(x)=A) limxf(x)=A(limxf(x)=Alimx+f(x)=A)那么 y = A y=A y=A是曲线

y = f ( x ) y=f(x) y=f(x)水平渐近线

2)若 lim ⁡ x → a f ( x ) = ∞ \lim_{x \to a}f(x)= \infty limxaf(x)= f ( a − 0 ) = ∞ f(a-0)=\infty f(a0)= f ( a + 0 ) = ∞ f(a+0)=\infty f(a+0)=,称 x = a x=a x=a为曲线 y = f ( x ) y=f(x) y=f(x)

直渐近线

【注】

​ ①若 x = a x=a x=a y = f ( x ) y=f(x) y=f(x)的垂直渐近线,则 x = a x=a x=a y = f ( x ) y=f(x) y=f(x)的间断点。反之若

x = a x=a x=a y = f ( x ) y=f(x) y=f(x)的间断点,则 x = a x=a x=a不一定为 y = f ( x ) y=f(x) y=f(x)的垂直渐近线。

​ ② f ( a + 0 ) , f ( a − 0 ) f(a+0),f(a-0) f(a+0),f(a0)只有一个为无穷大时, x = a x=a x=a也为 y = f ( x ) y=f(x) y=f(x)的垂直渐近线。

3)若 lim ⁡ x → ∞ f ( x ) x = a ( ≠ 0 , ∞ ) \lim_{x \to \infty}{f(x)\over x}=a(\neq0,\infty) limxxf(x)=a(=0,) lim ⁡ x → ∞ [ f ( x ) − a x ] = b \lim_{x \to \infty}[f(x)-ax]=b limx[f(x)ax]=b,(或 x → ± ∞ x \to \pm \infty x±)称

y = a x + b y=ax+b y=ax+b y = f ( x ) y=f(x) y=f(x)斜渐近线

6. 弧微分、曲率与曲率半径

弧微分

弧微分的基本公式: ( d s ) 2 = ( d x ) 2 + ( d y ) 2 (ds)^2=(dx)^2+(dy)^2 (ds)2=(dx)2+(dy)2,其中

(1)设L: y = f ( x ) y=f(x) y=f(x),则 d s = 1 + f ′ 2 ( x ) d x ds= \sqrt{1+f'^2(x)}dx ds=1+f2(x) dx

(2)设L: { x = φ ( t ) y = ψ ( t ) \begin{cases}x = \varphi(t)\\ y= \psi(t) \end{cases} {x=φ(t)y=ψ(t),则 d s = φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ds= \sqrt{\varphi'^2(t)+\psi'^2(t)}dt ds=φ2(t)+ψ2(t) dt

(3)设L: r = r ( θ ) r=r(\theta) r=r(θ),则 d s = r 2 ( θ ) + r ′ 2 ( θ ) d θ ds= \sqrt{r^2(\theta)+r'^2(\theta)}d \theta ds=r2(θ)+r2(θ) dθ

曲率与曲率半径

若曲线由 y = f ( x ) y=f(x) y=f(x)给出,曲率: k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 k={|y''| \over (1+y'^2)^{3 \over 2}} k=(1+y2)23y

若曲线由 { x = x ( t ) y = y ( t ) \begin{cases}x= x(t)\\y=y(t) \end{cases} {x=x(t)y=y(t)给出,由参数方程求导法则,求出 y ′ , y ′ ′ y',y'' y,y代入上面公式即可。

若曲线由 r = r ( θ ) r=r(\theta) r=r(θ)给出,则化为参数方程再进行计算。

曲率半径: R = 1 k R={1 \over k} R=k1

7. 作图步骤

①求函数 y = f ( x ) y=f(x) y=f(x)的定义域

②求 f ′ ( x ) f'(x) f(x),并求出驻点及不可导点

③求 f ′ ′ ( x ) f''(x) f(x),并求出二阶导数的零点及二阶不可导点

④确定函数在各小区间上 f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f(x)的符号,从而确定函数在各小区间上的单调性与凹

凸性

⑤求出函数的水平、垂直、斜渐近线

⑥找出关键点(极值点、拐点),再描图

注意的问题

  1. 求极值点,一定是连续才有极值点,如果函数在某点连续,判断在这点是极大值还是极

    小值,只需要知道这点两侧一阶导数的符号即可。(错误)

  2. 分段函数,要看分界点上有没有极值、拐点,这个时候,只要函数 f ( x ) f(x) f(x)在这点是连续

    的,那么不管是判定极值还是判定拐点,我们都不用去关心那一点一阶等不等于0,二

    阶存在不存在是不是等于0。根本不用管那点一阶和二阶,只要看它的两侧,两侧一阶

    变号,极值,二阶变号,拐点。

  3. 如果一个曲线能写成线性函数加 α ( x ) \alpha(x) α(x),即 y = a x + b + α ( x ) y=ax+b+ \alpha(x) y=ax+b+α(x) lim ⁡ x → ∞ α ( x ) = 0 \lim_{x \to \infty }\alpha(x)=0 limxα(x)=0

    那这个线性函数( y = a x + b y = ax +b y=ax+b)就是它的斜渐近线。

  4. 求水平渐近线的时候, e ∞ ≠ ∞ e^{\infty} \neq \infty e=,因为 e − ∞ = 0 e^{- \infty}=0 e=0

    水平渐近线:若 lim ⁡ x → ∞ f ( x ) = A ( lim ⁡ x → − ∞ f ( x ) = A 或 lim ⁡ x → + ∞ f ( x ) = A ) \lim_{x \to \infty}f(x)=A(\lim_{x \to -\infty}f(x)=A或\lim_{x \to +\infty}f(x)=A) limxf(x)=A(limxf(x)=Alimx+f(x)=A)

    y = A y=A y=A是曲线 y = f ( x ) y=f(x) y=f(x)水平渐近线

    在水平渐近线的定义里面 x → − ∞ 和 x → + ∞ x \to -\infty 和 x \to +\infty xx+都可以。

  5. 垂直渐近线是趋向于有限值极限为无穷。

  6. 求水平渐近线和斜渐近线的时候x是趋向于无穷的,这时候要考察 + ∞ 和 − ∞ +\infty 和 -\infty +

  7. 函数在一点没有一阶导数和二阶导数,也可能存在极值点和拐点。

    iShot2020-09-16下午04.45.03

  8. 整体用拉格朗日泰勒公式,局部用皮诺亚泰勒公式。

  9. 拐点一定要求是连续的。

  10. 函数在极值点处不一定连续。

  11. 拐点和极值点一定是在函数上有定义的点。

知识点

  1. 点到直线的距离

    设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离为:
    在这里插入图片描述

  2. l n e x = x lne^x=x lnex=x

  3. e l n x = x e^{lnx}=x elnx=x

  4. y = sin ⁡ x 与 y = arcsin ⁡ x 关 于 y = x 对 称 y= \sin x 与 y = \arcsin x 关于 y=x对称 y=sinxy=arcsinxy=x
    在这里插入图片描述

  5. 考研最常用的基本不等式

    sin ⁡ x < x < tan ⁡ x , x ∈ ( 0 , π 2 ) \sin x < x < \tan x, x \in (0, {\pi \over 2}) sinx<x<tanx,x(0,2π)

    x 1 + x < ln ⁡ ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) {x \over 1+x}< \ln (1+x) < x, x \in(0, +\infty) 1+xx<ln(1+x)<x,x(0,+)

问题

  1. 为什么拐点存在的必要条件是二阶导数等于0?

    由拐点的必要条件,若 f ′ ′ ( x ) f''(x) f(x)存在,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0f(x0))为拐点的必要条件为: f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f(x0)=0

    ( x 0 − δ , x 0 ) (x_0-\delta , x_0) (x0δ,x0) f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f(x0)<0 ( x 0 , x 0 + δ ) (x_0, x_0+\delta) (x0,x0+δ) f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f(x0)>0。则在 ( x 0 − δ , x 0 ) (x_0-\delta, x_0) (x0δ,x0)内下降,

    ( x 0 , x 0 + δ ) (x_0, x_0+\delta) (x0,x0+δ)内上升,故 f ′ ( x 0 ) f'(x_0) f(x0) ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))取极小值,因此 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f(x0)=0

在这里插入图片描述

一阶导数是原函数斜率的变化,二阶导数是一阶导数斜率的变化,一阶导数为0的点原

函数取得极值,二阶导数为0的点一阶导数取得极值。

  1. 为什么二阶导数不存在的点也可能称为函数的拐点?

    如函数 y = x 5 3 y = x^{5 \over 3} y=x35,在 x = 0 x=0 x=0时有一阶导数 y ′ = 5 3 x 2 3 y' = {5\over 3 }x^{2 \over 3} y=35x32,而二阶导数不存在。但是 ( 0 , 0 ) (0,0) (0,0)点是

    此函数的拐点,因为 y ′ = 5 3 x 2 3 y' = {5 \over 3}x^{2 \over 3} y=35x32 x < 0 x<0 x<0时单调减少,在 x > 0 x>0 x>0是单调增加。

在这里插入图片描述

补充

1. 函数为常数的条件与函数恒等式证明

(1)函数为常数的充要条件

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]为常数 ⇔ f ′ ( x ) = 0 ( ∀ x ∈ ( a , b ) ) \Leftrightarrow f'(x)=0(\forall x \in (a,b)) f(x)=0(x(a,b))

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上连续,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)为常数 ⇔ f ′ ( x ) = 0 ( ∀ x ∈ ( a , b ) ) \Leftrightarrow f'(x)=0(\forall x \in (a,b)) f(x)=0(x(a,b))

(2)两个函数差为常数的条件

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) ( a , b ) (a,b) (a,b)内可导,C为常数,则当 ∀ x ∈ ( a , b ) \forall x \in (a,b) x(a,b)时,

f ( x ) = g ( x ) + C ⇔ f ′ ( x ) = g ′ ( x ) f(x) = g(x)+C \Leftrightarrow f'(x)=g'(x) f(x)=g(x)+Cf(x)=g(x)

f ( x ) , g ( x ) f(x), g(x) f(x),g(x),在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,C为常数,则

f ( x ) = g ( x ) + C ( x ∈ [ a , b ] ) ⇔ f ′ ( x ) = g ′ ( x ) ( ∀ x ∈ ( a , b ) ) f(x) = g(x)+C (x \in [a,b]) \Leftrightarrow f'(x)=g'(x) (\forall x \in(a,b)) f(x)=g(x)+C(x[a,b])f(x)=g(x)(x(a,b))

(3)两个函数恒等的条件

f ( x ) , g ( x ) f(x), g(x) f(x),g(x),在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,则

f ( x ) = g ( x ) ( x ∈ [ a , b ] ⇔ f ′ ( x ) = g ′ ( x ) ( x ∈ ( a , b ) ) f(x)=g(x)(x \in [a,b] \Leftrightarrow f'(x) =g'(x)(x \in(a,b)) f(x)=g(x)(x[a,b]f(x)=g(x)(x(a,b)),且 ∃ x 0 ∈ [ a , b ] \exists x_0 \in [a,b] x0[a,b]使得 f ( x 0 ) = g ( x 0 ) f(x_0)=g(x_0) f(x0)=g(x0)

2. 函数在极值点处不一定连续

iShot2020-09-23下午05.36.22

函数在极值点处不一定可导。比如,函数 y = ∣ x ∣ y=|x| y=x x = 0 x=0 x=0处不可导,但是该函数的极小值

点。

函数在极值点处不一定连续、比如, y = { 2 , x = 1 x , x ≠ 1 y=\begin{cases}2, &x=1 \\ x , & x\neq1 \end{cases} y={2,x,x=1x=1

在这里插入图片描述

x=1是函数的极大值点。

【解】

y = 4 x 3 − 3 x ( x ∈ R ) 可 得 , y ′ = 12 ( x + 1 2 ) ( x − 1 2 ) y=4x^3-3x(x \in R)可得,y'=12(x+ {1 \over 2})(x - {1 \over 2}) y=4x33x(xR)y=12(x+21)(x21)

函数图像如下

在这里插入图片描述

a ≤ − 1 a \leq -1 a1时, f ( x ) f(x) f(x)是增函数,没有极值;

− 1 < a ≤ − 1 2 -1<a \leq - {1\over 2} 1<a21时, f ( x ) f(x) f(x)的极值点唯一且是极小值点 x = a x=a x=a

− 1 2 < a ≤ 0 - {1 \over 2}<a \leq0 21<a0时, f ( x ) f(x) f(x)的极大值点与极小值点均唯一且分别是 x = − 1 2 与 x = a x= -{1 \over 2}与x=a x=21x=a

0 < a ≤ 1 2 0<a \leq {1 \over 2} 0<a21时, f ( x ) f(x) f(x)的极值点唯一且是极大值点 x = − 1 2 x= - {1 \over 2} x=21

1 2 < a ≤ 1 {1 \over 2}<a \leq 1 21<a1时, f ( x ) f(x) f(x)的极大值点与极小值点均唯一且分别是 x = − 1 2 与 x = 1 2 x = -{1 \over 2}与x= {1 \over 2} x=21x=21

a > 1 a >1 a>1时, f ( x ) f(x) f(x)的极大值点有且仅有两个且分别是 x = − 1 2 与 x = a x = - {1 \over 2}与x=a x=21x=a,极小值点唯一且是

x = 1 2 x = {1 \over 2} x=21。(为什么x=a为极大值点?)

在这里插入图片描述

【其他】

2020031017471447

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值