数学分析(九)-定积分3-3-可积条件3-可积的充分条件4:案例【黎曼函数在区间[0,1]上可积,且∫₀¹R(x)dx=0】

本文通过两种方法证明了函数f(x)在区间[0,1]上可积,并讨论了黎曼函数R(x)在[0,1]上可积且其定积分为0的情况。证明过程结合了定理9.3'和定理9.5,通过选取合适的分割来展示函数的可积性。" 132682576,19695065,Linux特殊权限:嵌入式系统的SUID、SGID与SBIT,"['Linux', '嵌入式', '服务器运维']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例 2
试用两种方法证明函数

f ( x ) = { 0 , x = 0 , 1 n , 1 n + 1 < x ⩽ 1 n , n = 1 , 2 , ⋯ f(x)=\left\{\begin{array}{ll} 0, & x=0, \\ \frac{1}{n}, & \frac{1}{n+1}<x \leqslant \frac{1}{n}, n=1,2, \cdots \end{array}\right. f(x)={ 0,n1,x=0,n+11<xn1,n=1,2,

在区间 [ 0 , 1 ] [0,1] [0,1] 上可积.


证法一
由于 f f f 是一增函数 (图 9-8), 虽然它在 [ 0 , 1 ] [0,1] [0,1]上有无限多个间断点 x n = 1 n , n = 2 , 3 , ⋯ x_{n}=\frac{1}{n}, n=2,3, \cdots xn=n1,n=2,3,, 但由定理 9.6,仍保证它在 [ 0 , 1 ] [0,1] [0,1] 上可积.

在这里插入图片描述

证法二 (仅利用定理 9.3’和定理 9.5)
任给 ε > 0 \varepsilon>0 ε>0,由于 lim ⁡ n → ∞ 1 n = 0 \lim \limits_{n \rightarrow \infty} \frac{1}{n}=0 nlimn1=0, 因此当 n n n 充分大时 1 n < ε 2 \frac{1}{n}<\frac{\varepsilon}{2} n1<2ε, 这说明 f f f [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上只有有限个间断点. 利用定理 9.5和定理9.3’推知 f f f [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上可积,且存在对 [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 的某一分割 T ′ T^{\prime} T, 使得

∑ T ω i Δ x i < ε 2 . \sum_{T} \omega_{i} \Delta x_{i}<\frac{\varepsilon}{2} . TωiΔxi<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值