例 2
试用两种方法证明函数
f ( x ) = { 0 , x = 0 , 1 n , 1 n + 1 < x ⩽ 1 n , n = 1 , 2 , ⋯ f(x)=\left\{\begin{array}{ll} 0, & x=0, \\ \frac{1}{n}, & \frac{1}{n+1}<x \leqslant \frac{1}{n}, n=1,2, \cdots \end{array}\right. f(x)={ 0,n1,x=0,n+11<x⩽n1,n=1,2,⋯
在区间 [ 0 , 1 ] [0,1] [0,1] 上可积.
证
证法一
由于 f f f 是一增函数 (图 9-8), 虽然它在 [ 0 , 1 ] [0,1] [0,1]上有无限多个间断点 x n = 1 n , n = 2 , 3 , ⋯ x_{n}=\frac{1}{n}, n=2,3, \cdots xn=n1,n=2,3,⋯, 但由定理 9.6,仍保证它在 [ 0 , 1 ] [0,1] [0,1] 上可积.
证法二 (仅利用定理 9.3’和定理 9.5)
任给 ε > 0 \varepsilon>0 ε>0,由于 lim n → ∞ 1 n = 0 \lim \limits_{n \rightarrow \infty} \frac{1}{n}=0 n→∞limn1=0, 因此当 n n n 充分大时 1 n < ε 2 \frac{1}{n}<\frac{\varepsilon}{2} n1<2ε, 这说明 f f f 在 [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上只有有限个间断点. 利用定理 9.5和定理9.3’推知 f f f 在 [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上可积,且存在对 [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 的某一分割 T ′ T^{\prime} T′, 使得
∑ T ω i Δ x i < ε 2 . \sum_{T} \omega_{i} \Delta x_{i}<\frac{\varepsilon}{2} . T∑ωiΔxi<