定理 9.1
若函数 f f f 在 [ a , b ] [a, b] [a,b] 上连续, 且存在原函数 F F F, 即 F ′ ( x ) = f ( x ) , x ∈ [ a , b ] F^{\prime}(x)=f(x), x \in[a, b] F′(x)=f(x),x∈[a,b],则 f f f 在 [ a , b ] [a, b] [a,b] 上可积,且
∫ a b f ( x ) d x = F ( b ) − F ( a ) . ( 1 ) \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) . \quad\quad(1) ∫abf(x)dx=F(b)−F(a).(1)
上式称为牛顿一莱布尼茨公式,它也常写成
∫ a b f ( x ) d x = F ( x ) ∣ a b . \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . ∫abf(x)dx=F(x)∣ab.
从定理 9.1 及其后注中看到, 要判别一个函数是否可积, 必须研究可积条件.
定理 9.2
若函数 f f f 在 [ a , b ] [a, b] [a,b] 上可积,则 f f f 在 [ a , b ] [a, b] [a,b] 上必定有界.
证
用反证法. 若 f f f 在 [ a , b ] [a, b] [a,b] 上无界, 则对于 [ a , b ] [a, b] [a,b] 的任一分割 T T