数学分析(九)-定积分3-1-可积条件1:可积的必要条件【若函数f在[a,b]上可积,则f在[a,b]上必定有界】

本文介绍了数学分析中的定积分可积条件,特别是必要条件——函数必须在区间上有界。通过定理9.1和9.2,阐述了连续函数存在原函数则可积,以及可积函数必然有界的道理。同时,举例说明有界函数狄利克雷函数在[0,1]上虽有界但不可积,强调了有界性是可积性的必要而非充分条件。" 90247724,8392371,排序算法评估指标解析:MAP、MRR与NDCG,"['机器学习', '排序算法', '评估指标']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 9.1

若函数 f f f [ a , b ] [a, b] [a,b] 上连续, 且存在原函数 F F F, 即 F ′ ( x ) = f ( x ) , x ∈ [ a , b ] F^{\prime}(x)=f(x), x \in[a, b] F(x)=f(x),x[a,b],则 f f f [ a , b ] [a, b] [a,b] 上可积,且

∫ a b f ( x ) d x = F ( b ) − F ( a ) . ( 1 ) \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) . \quad\quad(1) abf(x)dx=F(b)F(a).(1)

上式称为牛顿一莱布尼茨公式,它也常写成

∫ a b f ( x ) d x = F ( x ) ∣ a b . \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . abf(x)dx=F(x)ab.

从定理 9.1 及其后注中看到, 要判别一个函数是否可积, 必须研究可积条件.


定理 9.2

若函数 f f f [ a , b ] [a, b] [a,b] 上可积,则 f f f [ a , b ] [a, b] [a,b] 上必定有界.


用反证法. 若 f f f [ a , b ] [a, b] [a,b] 上无界, 则对于 [ a , b ] [a, b] [a,b] 的任一分割 T T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值