数学分析(九)-定积分3-4-可积性理论2-1:可积的第一充要条件【函数f在[a,b]上可积充要条件:f在[a,b]上的上积分与下积分相等,即:S=s】

定理9.14阐述了函数f在[a,b]上可积的充要条件,即上积分S与下积分s相等。通过证明必要性和充分性,当上、下积分相等时,根据达布定理,可以得出函数的积分值。反之,若积分不等,则函数不可积,如狄利克雷函数在[0,1]上的情况。" 133265014,20014495,C++ Lambda在嵌入式系统的应用,"['C++编程', '嵌入式开发', 'C++11特性']
摘要由CSDN通过智能技术生成

定理9.14(可积的第一充要条件)

函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是: f f f [ a , b ] [a, b] [a,b] 上的上积分与下积分相等,即

S = s . S=s . S=s.


必要性
f f f [ a , b ] [a, b] [a,b] 上可积, J = ∫ a b f ( x ) d x J=\int_{a}^{b} f(x) \mathrm{d} x J=abf(x)dx.

由定积分定义, 任给 ε > 0 \varepsilon>0 ε>0, 存在 δ > 0 \delta>0 δ>0, 只要 ∥ T ∥ < δ \|T\|<\delta T<δ, 就有

∣ ∑ i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值