定理9.14(可积的第一充要条件)
函数 f f f 在 [ a , b ] [a, b] [a,b] 上可积的充要条件是: f f f 在 [ a , b ] [a, b] [a,b] 上的上积分与下积分相等,即
S = s . S=s . S=s.
证
必要性
设 f f f 在 [ a , b ] [a, b] [a,b] 上可积, J = ∫ a b f ( x ) d x J=\int_{a}^{b} f(x) \mathrm{d} x J=∫abf(x)dx.
由定积分定义, 任给 ε > 0 \varepsilon>0 ε>0, 存在 δ > 0 \delta>0 δ>0, 只要 ∥ T ∥ < δ \|T\|<\delta ∥T∥<δ, 就有
∣ ∑ i