VMD-MSE-GRU(变分模态分解-多尺度样本熵-门控循环神经网络)

本文介绍了多尺度样本熵(MultiscaleSampleEntropy)在信号分析中的作用,结合变分模态分解(VMD)和GRU(门控循环神经网络)进行单序列预测。GRU通过简化LSTM结构提高效率,通过对比预测效果优化模型。
摘要由CSDN通过智能技术生成

用于单序列预测

 

VMD-MSE-GRU(变分模态分解-多尺度样本熵-门控循环神经网络)代码获取戳此处

多尺度样本熵(Multiscale Sample Entropy)是一种用于分析时间序列数据的方法,它可以用来评估信号的复杂性和不规则性。多尺度样本熵可以帮助我们理解信号的动态特征,并在许多领域中得到广泛应用,如生物医学工程、金融市场分析和机械故障诊断等。

多尺度样本熵的计算过程如下:

  1. 首先,将原始时间序列数据分解成不同尺度的子序列。这可以通过使用滑动窗口或小波变换等方法来实现。
  2. 对于每个尺度的子序列,计算其样本熵。样本熵是一种用于衡量信号复杂性的指标,它可以反映信号的不规则性和无序性。
  3. 最后,将每个尺度的样本熵值进行汇总,得到多尺度样本熵。

多尺度样本熵的计算可以帮助我们发现信号中的不同时间尺度上的动态特征,从而更好地理解信号的复杂性和不规则性。它可以用于分析和比较不同信号的复杂性,以及监测信号的变化和异常。

以VMD分解后残差res的多尺度样本熵的均值,通过设定阈值判断最佳模态分解数K,:

GRU(Gated Recurrent Unit)是一种循环神经网络(RNN)的变体,它在保持了LSTM(Long Short-Term Memory)的效果的同时,简化了结构。GRU只有两个门控单元,分别是更新门(update gate)和重置门(reset gate)。更新门控制前一时刻的状态信息是否传递到当前时刻,而重置门控制前一时刻的状态信息如何与当前时刻的输入进行组合。

GRU的结构相对于LSTM更加简单,因此在某些任务上性能不相上下。GRU的参数相对较少,这使得它在训练和推理过程中的计算效率更高。

GRU的更新门和重置门的计算方式如下: 更新门:$z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$ 重置门:$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$

然后将分解结果经过GRU进行预测,与原数据GRU预测进行对比,预测效果获得提升。效果图如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值