神经网络算法:一文搞懂Attention(注意力)机制

本文详细阐述了Attention机制的核心逻辑、原理以及在AI领域的应用,包括Transformer模型、BERT和GPT的发展。通过图书馆寻找漫威书籍的例子,生动展示了Attention如何根据信息重要性分配注意力。
摘要由CSDN通过智能技术生成

本文将从Attention的本质、Attention的原理、Attention的应用三个方面,带您一文搞懂Attention(注意力)机制。

图片

Attention的本质

核心逻辑:从关注全部到关注重点

  • Attention机制处理长文本时,能从中抓住重点,不丢失重要信息

  • Attention 机制像人类看图片的逻辑,当我们看一张图片的时候,我们并没有看清图片的全部内容,而是将注意力集中在了图片的焦点上。

  • 我们的视觉系统就是一种 Attention机制,将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。

图片

视觉系统就是一种Attention机制

Transformer:《Attention is All You Need》

  • Transformer模型,完全基于注意力机制,避开了传统的RNN或CNN结构

  • 引入了Self-Attention机制,使模型可以对输入序列中的所有元素进行关联建模

  • Multi-Head Attention使得模型能够从多个角度捕获输入序列的信息

  • 为后续的大规模预训练语言模型(如BERT、GPT等)奠定了基础。

图片

**AI 领域的 Attention 机制:**Attention->Transformer->BERT、GPT->NLP

二、Attention的原理

原理初体验: 小故事讲解 Attention原理

  • Attention机制好比在图书馆中有大量的书籍,每本书都有特定的编号和内容。当想要了解某个主题(比如“漫威”)时,会查找与这个主题相关的书籍。

  • 与“漫威”直接相关的动漫、电影书籍会仔细地阅读(权重高),而与“漫威”间接相关的二战书籍只需要简单浏览一下(权重低)。

  • 这个过程就体现了Attention机制的核心思想:根据信息的重要性来分配注意力

图片

Attention机制:了解漫威

Attention原理:3阶段分解

图片

Attention机制的原理图

  • 第一步:query 和 key 进行相似度计算,得到权值。

  • 第二步:将权值进行归一化,得到直接可用的权重。

  • 第三步:将权重和 value 进行加权求和。

RNN 时代是死记硬背的时期,Attention机制学会了提纲挈领进化到Transformer,融会贯通,具备优秀的表达学习能力,再到 GPT、BERT,通过多任务大规模学习积累实战经验,战斗力爆棚。

三、Attention的应用

CNN + Attention:

CNN的卷积操作可以提取重要特征,这也算是Attention的思想。但是CNN的卷积感受视野是局部的,需要通过叠加多层卷积区去扩大视野。

CNN叠加Attention方式如下:

  • 在卷积操作前做Attention: 比如Attention-Based BCNN-1,对两段输入的序列向量进行Attention,计算出特征向量,再拼接到原始向量中,作为卷积层的输入。

  • 在卷积操作后做Attention: 比如Attention-Based BCNN-2,对两段文本的卷积层的输出做Attention,作为池化层的输入。

  • 在池化层做Attention: 比如Attention pooling,首先我们用LSTM学到一个比较好的句向量,作为query,然后用CNN先学习到一个特征矩阵作为key,再用query对key产生权重,进行Attention,得到最后的句向量。

LSTM+Attention:

LSTM内部有门控机制,其中输入门选择哪些当前信息进行输入,遗忘门选择遗忘哪些过去信息,这也算是一定程度的Attention。但LSTM需要一步一步去捕捉序列信息,在长文本上的表现会随着步骤的增加而慢慢衰减,难以保留全部的有用信息。

LSTM通常需要得到一个向量,再去做任务,常用方式有:

  • 直接使用最后的隐藏层(可能会损失一定的前文信息,难以表达全文)

  • 对所有步骤下的隐藏层进行等权平均(对所有步骤一视同仁)。

  • Attention机制,对所有步骤的隐藏层进行加权,把注意力集中到整段文本中比较重要的隐藏层信息。性能比前面两种要好一点,方便可视化观察哪些步骤是重要的。

  • 22
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Attention 机制是一种用于序列到序列模型的技术,它使得模型可以关注输入序列中与当前输出相关的部分。Bahdanau 和 Luong 是两种常用的 Attention 机制,它们的区别主要在于计算注意力分配时所使用的方法。 Bahdanau Attention Bahdanau Attention 是一种基于内容的注意力机制,它将注意力分配看作是一种给定上下文向量和一组查询向量的加权求和。在 Bahdanau Attention 中,上下文向量是由编码器输出的所有隐藏状态的加权和,而查询向量则是由解码器当前隐藏状态计算得出的。 具体来说,Bahdanau Attention 的计算过程如下: 1. 对于解码器当前隐藏状态 $s_t$,计算一组查询向量 $q_t$。 2. 对于编码器的所有隐藏状态 $h_i$,计算其对应的注意力得分 $e_{ti}$。 3. 将注意力得分 $e_{ti}$ 通过 softmax 函数转化为注意力权重 $a_{ti}$。 4. 将编码器所有隐藏状态 $h_i$ 与注意力权重 $a_{ti}$ 做加权求和,得到当前时间步的上下文向量 $c_t$。 Luong Attention Luong Attention 是一种基于位置的注意力机制,它将注意力分配看作是一种根据解码器当前隐藏状态和编码器所有隐藏状态之间的相似度计算得出的权重分布。在 Luong Attention 中,有三种不同的计算方式:点乘注意力、拼接注意力和缩放点积注意力。 具体来说,Luong Attention 的计算过程如下: 1. 对于解码器当前隐藏状态 $s_t$,计算一组查询向量 $q_t$。 2. 对于编码器的所有隐藏状态 $h_i$,计算其对应的特征向量 $z_i$。 3. 根据解码器当前隐藏状态 $s_t$ 和编码器的所有特征向量 $z_i$,计算相似度得分 $e_{ti}$。 4. 根据相似度得分 $e_{ti}$,使用 softmax 函数计算注意力权重 $a_{ti}$。 5. 将编码器所有隐藏状态 $h_i$ 与注意力权重 $a_{ti}$ 做加权求和,得到当前时间步的上下文向量 $c_t$。 简而言之,Bahdanau Attention 是基于内容的注意力机制,而 Luong Attention 则是基于位置的注意力机制,它们在计算注意力分配时所使用的方法有所不同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值