大模型面试准备(五):一文搞懂 LangChain 的智能体 Agents 模块

文章介绍了大模型面试中重要的知识点,如LangChain的Agents模块,包括Agents的本质、原理、应用,以及Transformer、Attention、BERT、GPT等技术的详解。内容涵盖了基础理论到实战应用,为算法岗面试者提供全面准备指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。


合集在这里:《大模型面试宝典》(2024版) 正式发布!


本文将从 Agents 的本质、Agents 的原理、Agents 的应用三个方面,带您一文搞懂 LangChain 的 Agents 模块。

图片

面试准备

一、Agents 的本质

Agents 是什么?

Agents 的核心概念是利用语言模型来选择一系列要执行的动作。与传统的硬编码动作链不同,Agents 使用语言模型作为推理引擎来确定要执行哪些动作以及它们的执行顺序。

  • 基于语言模型的决策:LangChain Agents以语言模型为核心,使其能够理解和执行自然语言或类似自然语言的指令。这种能力让Agents可以灵活地适应不同的任务和环境,无需硬编码特定的逻辑。

  • 可组合性与扩展性:LangChain框架注重Agents的可组合性和系统的扩展性。Agents可以通过组合各种工具和模块(如数据检索、信息提取、API调用等)来扩展其功能。这种设计方式不仅简化了维护和更新过程,还促进了代码和知识的重用。

  • 学习与适应性:结合机器学习技术(如强化学习),Agents可以从经验中学习并优化其行为策略,以应对复杂和动态变化的环境,从而提高性能和效率。

Agents 由几个部分组成。

  • 模式(Schema):是一组规则和结构,定义了代理如何与外部工具进行交互、执行动作以及管理任务状态,从而实现智能的多步骤推理和决策。主要包括AgentAction、Intermediate Steps、AgentFinish。

  • 代理(Agent): 负责决策下一个动作的实体。代理使用语言模型、提示和输出解析器来支持其决策过程。主要包括Agent Inputs、Agent Outputs。

  • 代理执行器(AgentExecutor): 负责运行代理并管理其与外部工具的交互。执行器处理复杂性,如工具错误处理、日志记录等。

  • 工具(Tools): 代理可以调用的函数或服务。每个工具都有一个输入模式和一个关联的函数,用于描述如何调用该工具以及实际执行的操作。

  • 工具包(Toolkits): 相关工具的集合,用于完成特定任务。例如,GitHub 工具包可能包含用于搜索问题、读取文件、发表评论等的工具。

图片

Agents 能干什么?

Agent System由多个协作的智能代理构成,这些代理能自主行动、响应环境、与其他代理或用户交互,并根据目标、规则和知识执行任务或决策。

在Lilian Weng的博客中,她阐述了以LLM为核心的AI Agents系统,其中LLM负责推理、决策和生成语言,还需结合规划、记忆和工具使用等关键组件来完善功能。

  • 规划(Planning):规划能力使得代理能够将复杂的任务分解成更小、更可管理的子目标。这有助于代理在面对复杂任务时能够有条不紊地执行。同时,代理还具备反思和细化的能力,可以从过去的经验中学习并改进未来的行为。

  • 记忆(Memory):记忆能力是代理系统中的重要组成部分。短期记忆允许代理在处理任务时保持上下文信息的一致性,而长期记忆则使得代理能够存储和回忆以前的知识和经验。这种记忆能力对于实现持续学习和适应新环境至关重要。

  • 工具使用(Tool Use):工具使用能力允许代理调用外部API来获取额外信息或执行特定操作。这些信息可能是模型权重中缺少的,但对于完成任务至关重要。通过调用外部工具,代理可以扩展其功能并适应更广泛的应用场景。

图片

二、Agents 的原理

Agents 的工作流程:通过结合大型语言模型(LLM)的推理能力和外部工具的执行能力,接收任务后进行思考、行动、接收反馈并重复这些步骤,直至任务完成或达到终止条件。

Agents 流程包含以下四个核心步骤:

  • 接收任务:LLM Agent首先接收一个任务描述或问题。

  • 思考:然后,它利用LLM进行推理和决策。例如,它可能会生成一个潜在的解决方案或行动计划。

  • 行动:接下来,LLM Agent会执行一些操作以完成任务。这些操作可能包括调用API获取数据、查询数据库、执行计算等。

  • 接收反馈:在执行操作后,LLM Agent会接收来自环境的反馈。这些反馈可能包括API的响应、数据库查询的结果等。

如果任务还没有完成,LLM Agent会重复上述步骤,直到任务完成或达到某个终止条件。

图片

Agent Types: 在LangChain中,Agent Types定义了不同类型的代理(Agents),这些代理使用不同的策略和方法来与用户和工具进行交互,以完成各种任务。

  • Zero-shot ReAct:
    这种Agent使用ReAct(Retrieve-and-Act)框架,该框架通过理解工具的描述来选择最合适的工具执行任务。Zero-shot意味着Agent不需要针对特定任务进行训练,而是可以基于工具的描述直接进行推断。

  • Structured tool chat:
    这种Agent支持使用具有复杂输入参数的工具。通过定义args_schema,Agent可以理解每个工具所需输入参数的结构和类型,从而与用户进行更结构化的对话以收集必要的信息。这有助于确保与工具的交互是准确和一致的。

  • Conversational:
    与标准ReAct Agent相比,Conversational Agent更注重与用户进行自然对话。它的提示和响应设计得更加对话性,适合在聊天场景中使用。

  • Self-ask with search:
    这种Agent类型集成了搜索功能,允许它自主地在搜索引擎中查找信息以回答问题。这增加了Agent的知识来源和回答问题的能力。

  • ReAct document store:
    使用这种Agent,用户可以与一个文档存储进行交互。该Agent包含两个关键工具:“Search”用于在文档存储中搜索相关文档,“Lookup”用于在最近找到的文档中查找特定术语或信息。

  • XML Agent:
    XML Agent专门用于处理XML格式的数据。它使用XML格式来解析工具调用和最终答案,这使得它特别适合与返回XML响应的工具或服务进行交互。

图片

三、Agents 的应用

Agents应用场景:在需要根据不同输入动态决定工具使用次数和顺序的复杂任务中,实现灵活智能的决策和处理。

工具链:有些任务的处理流程是固定的,我们可以预先设定一个工具链来按顺序处理。

在这里插入图片描述

但有些任务的处理流程是动态的,需要根据输入来决定使用哪些工具以及如何使用。

Agents是一种可以实现这种动态决策的机制,它可以根据输入和当前状态来选择下一步的操作,从而实现更加灵活和智能的任务处理。

在这里插入图片描述

Agents应用创建:使用 LangChain 库创建一个简单的代理(agent),该代理能够处理数学运算任务。

一、创建工具函数:通过装饰器 @tool 创建了三个工具函数:multiply(乘法)、add(加法)和 exponentiate(指数运算)。这些函数接收整数作为参数,并返回运算结果。

图片

二、创建提示模板:从 LangChain Hub 中获取一个提示模板。这个模板用于指导大型语言模型(LLM)如何生成响应。

图片

三、创建代理和执行器:选择一个大型语言模型来驱动代理。使用所选的模型、工具函数和提示模板来构建 OpenAI Tools 代理。同时,创建一个代理执行器,将代理和工具函数传递给它。

图片

四、调用代理: 代理会根据输入和提示模板动态地调用适当的工具函数来完成运算,并返回运算结果。

图片

<think>好的,用户现在想了解Dify节点的相关信息或配置,特别是节点的配置和使用方法。让我先回顾一下之前的对话历史和提供的参考资料。用户之前询问了如何下载Dify源码,现在转向节点的具体配置和使用。 首先,用户提供的引用中提到了零基础AI开发系列教程中的Dify节点详细介绍,分为上、中、下三部分,这可能涉及节点的类型、功能以及具体操作步骤。另外,引用[2]提到了HTTP请求节点的认证方式,引用[3]则讨论了变量聚合节点的作用。这些信息都是关键点,需要整合到回答中。 用户的具体问题是如何配置和使用Dify节点,因此需要分步骤解释,包括节点类型、配置步骤、常见节点的操作示例,以及注意事项。可能需要结合之前的回答中提到的源码结构和相关模块,如蓝图控制器,来增强回答的专业性。 需要注意的是,用户可能对Dify的工作流设计不太熟悉,因此需要从基础开始解释,例如节点的概念、如何添加到工作流、配置参数等。同时,结合引用中的HTTP节点和变量聚合节点作为例子,能够具体说明配置过程,帮助用户理解。 另外,用户之前的问题涉及源码下载和依赖项,因此在回答节点配置时,可能需要提到环境准备,比如确保Docker和相关服务已正确安装,这部分在之前的回答中已经提到过,可以引用之前的建议作为参考。 还需要考虑用户可能的后续问题,比如遇到配置错误如何处理,或如何调试节点,所以应在注意事项中涵盖这些方面,或者生成相关问题引导用户进一步探索。 最后,确保回答结构清晰,分点说明,并正确引用提供的资料,比如引用[1]的教程系列,引用[2]的HTTP节点认证,引用[3]的变量聚合节点功能。同时,使用中文,符合格式要求,行内公式用$...$,独立公式用$$...$$,但可能这里公式较少,重点在配置步骤和代码示例。</think>### Dify 节点配置与使用详解 Dify 的节点是工作流设计的核心组件,用于实现数据处理、逻辑控制和结果聚合等功能。以下是节点配置与使用的关键要点及操作示例: --- #### 一、节点基础配置 1. **节点类型与功能** - **输入节点**:接收外部数据(如用户输入、API请求) - **处理节点**:执行逻辑操作(如LLM调用、条件分支、变量聚合[^3]) - **输出节点**:返回最终结果(如API响应、文件生成) 2. **通用配置步骤** ```bash # 示例:通过Dify界面配置节点的基本流程 1. 创建工作流 -> 拖拽节点至画布 -> 连接节点 2. 双击节点 -> 填写参数 -> 保存配置 ``` - **必填字段**:节点名称、输入/输出变量映射 - **动态参数**:支持通过 `{{variable}}` 语法引用上下文变量 --- #### 二、常见节点操作示例 1. **HTTP请求节点** *(适用于调用外部API)* - **认证配置**: 使用Bearer Token认证时,需在请求头添加: ```http Authorization: Bearer {{your_api_key}}[^2] ``` - **参数映射**: 将上游节点的输出变量(如 `{{query_result}}`)映射到请求体参数 2. **变量聚合节点** *(整合多分支结果)* ```yaml # 配置示例:聚合分类结果 branches: - path: A output_vars: {category: "科技"} - path: B output_vars: {category: "生活"} aggregated_var: unified_category[^3] ``` - **作用**:将不同分支的 `category` 变量统一映射为 `unified_category` 3. **LLM调用节点** *(核心AI处理单元)* - **模型选择**:支持本地部署模型(如DeepSeek)或云端API - **提示词模板**: 使用动态变量增强灵活性: ```python "请根据{{user_input}}生成摘要,限制{{max_length}}字" ``` --- #### 三、高级配置技巧 1. **条件分支控制** ```python # 通过表达式实现动态路由 if {{input.score}} > 0.7: route_to = "positive_feedback" else: route_to = "default_process" ``` 2. **错误处理机制** - **重试策略**:配置HTTP节点的超时时间与重试次数 - **异常捕获**:添加备用处理节点应对API调用失败 3. **性能优化** - **并行执行**:对无依赖关系的节点启用并行处理 - **缓存设置**:为LLM节点配置结果缓存(需启动Redis服务[^1]) --- #### 四、注意事项 1. **环境依赖** 确保已部署 PostgreSQL(数据库)、Redis(缓存)、Weaviate(向量搜索)等基础设施[^1] 2. **调试工具** 使用工作流的 **"测试运行"** 功能实时观察变量传递状态 3. **版本兼容** 升级Dify版本时需检查节点配置变更(参考《Dify升级指南》[^1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值