一、AI产品经理和和通用型产品经理的异同:
市面上不同的公司对产品经理的定位有很大的差别,一名合格的产品经理是能对软件产品整个生命周期负责的人。
思考框架相同: AI产品经理和通用型软件产品经理的底层思考框架是一样的,都是要经历产品立项、需求分析、产品设计、产品执行管理(研发测试)、验收、分析迭代这几个阶段。
思维模式不同:通用型产品经理,只需要把业务流程、痛点理清楚,在进行逻辑处理、界面流程化,软件化即可。
而AI产品是AI技术为出发点,为各行各业提供全新的解决方案,甚至会变更原来的业务流程和使用方式。
- 1、根据公司类型(AI公司与非AI公司)及是否自研区分AI产品经理对AI能力的要求:
人工智能已经成为国家的重点发展方向之一,各行各业也加入到AI这个大家庭。除了AI公司招聘AI产品经理,一些传统公司也招。
如下为AI公司的 AI产品经理的招聘要求:
如下为非AI公司的 AI产品经理的招聘要求:
- 2、AI产品的使用群体(购买群体)和载体
AI产品经理分为toB AI产品经理、toC AI产品经理、AI硬件产品经理。
侧重点:
toB AI产品经理: 实际效果, 业务场景
toC AI产品经理: 用户体验, 数据运营
AI硬件产品经理: 使用场景(商场、家里)、硬件运维
二、AI产品经理必备的技能
除了通用型产品经理需要的技能外,还需要加强 对AI场景、AI能力效果、AI算法、数据的理解。
其实AI产品经理就是 用 数据+AI算法 形成效果好的AI应用或场景。
三、如何成为AI产品经理:
1、了解AI应用场景和技术: 多看多试用,BATH 等大公司都有智能云平台,从AI应用场景、产品(体验)、报价等全方位了解。
以下是AI产品经理涉及到的AI技术,并不是说每个技术都非常熟悉,也不是要对算法细节精通。而是根据自己涉及的领域从单点向外辐射,了解各算法、模型的使用场景及其优劣势,逐渐丰富AI技术体系。
由于目前很多AI能力的效果还无法达到商用效果,所以某些AI类产品会混合规则类、统计学的方法去尽量规避AI算法的不可预测性。
2、了解数据对AI产品的重要性:AI产品的核心是数据,只有有效的数据+合适的算法才能合成符合需求的AI模型。
前期尽量参与到产品生命周期的每个细节(包括数据标注、后期运营)
3、熟悉AI类产品的评价指标。 比如智能客服问答的召回率、准确率;ASR的句识别准确率、和字识别准确率等。
四、如果你刚成为AI产品经理尽量做到如下:
1、多问:问AI算法工程师调参的来龙去脉,
2、多做:自己标注和修改数据
3、多听:测试人员的体验优化建议
4、如果可以,每个岗位都轮一段时间。
如何转行/入门AI产品经理 ?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AIGC在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,以下是整个学习思路和方向👇
1️⃣AI产品经理全局学习
2️⃣python系统学习
3️⃣机器学习&深度学习
4️⃣热门AI产品竞品分析
5️⃣AI产品设计学习
6️⃣AI产品0-1实操项目经验
7️⃣AI产品求职&面试
💎以上7点,看起来简单,内部内容其实很多,每一个篇章,展开都有夯实且丰富的内容,需要深度学习。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
