项目简介
OWL 是一个前沿的多智能体协作框架,推动任务自动化的边界,愿景是彻底变革 AI 智能体协作解决现实任务的方式。通过利用动态智能体交互,OWL 实现了跨多领域更自然、高效且稳健的任务自动。
✨️ 核心功能
- 在线搜索
:支持多种搜索引擎(包括维基百科、Google、DuckDuckGo、百度、博查等),实现实时信息检索与知识获取
- 多模态处理
:支持互联网或本地视频、图片、语音处理
- 浏览器操作
:借助Playwright框架开发浏览器模拟交互,支持页面滚动、点击、输入、下载、历史回退等功能
- 文件解析
:word、excel、PDF、PowerPoint信息提取,内容转文本/Markdown
- 代码执行
:编写python代码,并使用解释器运行
- 丰富工具包
:提供丰富的工具包,包括ArxivToolkit(学术论文检索)、AudioAnalysisToolkit(音频分析)、CodeExecutionToolkit(代码执行)、DalleToolkit(图像生成)、DataCommonsToolkit(数据共享)、ExcelToolkit(Excel处理)、GitHubToolkit(GitHub交互)、GoogleMapsToolkit(地图服务)、GoogleScholarToolkit(学术搜索)、ImageAnalysisToolkit(图像分析)、MathToolkit(数学计算)、NetworkXToolkit(图形分析)、NotionToolkit(Notion交互)、OpenAPIToolkit(API操作)、RedditToolkit(Reddit交互)、SearchToolkit(搜索服务)、SemanticScholarToolkit(语义学术搜索)、SymPyToolkit(符号计算)、VideoAnalysisToolkit(视频分析)、WeatherToolkit(天气查询)、BrowserToolkit(网页交互)等多种专业工具,满足各类特定任务需求。
🛠️ 安装
选项1:使用 uv(推荐)
# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git
# 进入项目目录
cd owl
# 如果你还没有安装 uv,请先安装
pip install uv
# 创建虚拟环境并安装依赖
# 我们支持使用 Python 3.10、3.11、3.12
uv venv .venv --python=3.10
# 激活虚拟环境
# 对于 macOS/Linux
source .venv/bin/activate
# 对于 Windows
.venv\Scripts\activate
# 安装 CAMEL 及其所有依赖
uv pip install -e .
# 完成后退出虚拟环境
deactivate
选项2:使用 venv 和 pip
# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git
# 进入项目目录
cd owl
# 创建虚拟环境
# 对于 Python 3.10(也适用于 3.11、3.12)
python3.10 -m venv .venv
# 激活虚拟环境
# 对于 macOS/Linux
source .venv/bin/activate
# 对于 Windows
.venv\Scripts\activate
# 从 requirements.txt 安装
pip install -r requirements.txt --use-pep517
选项3:使用 conda
# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git
# 进入项目目录
cd owl
# 创建 conda 环境
conda create -n owl python=3.10
# 激活 conda 环境
conda activate owl
# 选项1:作为包安装(推荐)
pip install -e .
# 选项2:从 requirements.txt 安装
pip install -r requirements.txt --use-pep517
# 完成后退出 conda 环境
conda deactivate
设置环境变量
OWL 需要各种 API 密钥来与不同的服务进行交互。owl/.env_template
文件包含了所有必要 API 密钥的占位符,以及可以注册这些服务的链接。
选项 1:使用 .env
文件(推荐)
-
复制并重命名模板:
cd owl
cp .env_template .env
-
配置你的 API 密钥: 在你喜欢的文本编辑器中打开
.env
文件,并在相应字段中插入你的 API 密钥。注意:对于最小示例(
examples/run_mini.py
),你只需要配置 LLM API 密钥(例如,OPENAI_API_KEY
)。
选项 2:直接设置环境变量
或者,你可以直接在终端中设置环境变量:
-
macOS/Linux (Bash/Zsh):
export OPENAI_API_KEY="你的-openai-api-密钥"
Windows (命令提示符):
set OPENAI_API_KEY="你的-openai-api-密钥"
Windows (PowerShell):
$env:OPENAI_API_KEY = "你的-openai-api-密钥"
注意:直接在终端中设置的环境变量仅在当前会话中有效。
使用Docker运行
OWL可以通过Docker轻松部署,Docker提供了跨不同平台的一致环境。
设置说明
# 克隆仓库
git clone https://github.com/camel-ai/owl.git
cd owl
# 配置环境变量
cp owl/.env_template owl/.env
# 编辑.env文件,填入您的API密钥
部署选项
选项1:使用预构建镜像(推荐)
# 此选项从Docker Hub下载一个即用型镜像
# 最快速且推荐给大多数用户
docker-compose up -d
# 在容器中运行OWL
docker-compose exec owl bash
cd .. && source .venv/bin/activate
playwright install-deps
xvfb-python examples/run.py
选项2:本地构建镜像
# 适用于需要自定义Docker镜像或无法访问Docker Hub的用户:
# 1. 打开docker-compose.yml
# 2. 注释掉"image: mugglejinx/owl:latest"行
# 3. 取消注释"build:"部分及其嵌套属性
# 4. 然后运行:
docker-compose up -d --build
# 在容器中运行OWL
docker-compose exec owl bash
cd .. && source .venv/bin/activate
playwright install-deps
xvfb-python examples/run.py
选项3:使用便捷脚本
# 导航到容器目录
cd .container
# 使脚本可执行并构建Docker镜像
chmod +x build_docker.sh
./build_docker.sh
# 使用您的问题运行OWL
./run_in_docker.sh "您的问题"
MCP Desktop Commander设置
如果在Docker中使用MCP Desktop Commander,请运行:
npx -y @wonderwhy-er/desktop-commander setup --force-file-protocol
项目链接
https://github.com/camel-ai/owl/blob/main/README_zh.md
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓