一文看懂通义Qwen3模型

前言


    Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展。

模型特性

  • 在同一模型中无缝切换思考模式(用于复杂逻辑推理、数学和编码)和非思考模式(用于高效、通用对话),确保在各种场景下的最佳性能。

  • 显著增强的推理能力,在数学、代码生成和常识逻辑推理方面超越了之前的 QwQ(思考模式)和 Qwen2.5 指令模型(非思考模式)。

  • 卓越的人类偏好对齐,擅长创意写作、角色扮演、多轮对话和指令执行,提供更加自然、引人入胜和沉浸式的对话体验。

  • 专业的代理能力,能够在思考和非思考模式下精确集成外部工具,并在复杂的基于代理的任务中达到开源模型中的领先性能。

  • 支持 100 多种语言和方言,具有强大的多语言指令执行和翻译能力。

Qwen3 模型支持两种思考模式:

  1. 思考模式:在这种模式下,模型会逐步推理,经过深思熟虑后给出最终答案。这种方法非常适合需要深入思考的复杂问题。

  2. 非思考模式:在此模式中,模型提供快速、近乎即时的响应,适用于那些对速度要求高于深度的简单问题。

模型参数量

Model

Layers

Heads(Q/KV)

length

Qwen3-235B-A22B

94

128/8

128k

Qwen3-32B

64

64/8

128k

Qwen3-30B-A3B

48

32/4

128k

Qwen3-14B

40

40/8

128k

Qwen3-8B

36

32/8

128k

Qwen3-4B

36

32/8

32k

Qwen3-1.7B

28

16/8

32k

Qwen3-0.6B

28

16/8

32k

modescope:https://www.modelscope.cn/models?name=Qwen3

模型指标

Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。此外,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%(可以显著减低推理成本),表现更胜一筹。甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。

预训练

在预训练方面,Qwen3 的数据集相比 Qwen2.5 实现了显著扩展。Qwen2.5基于 18 万亿 token 完成预训练,而 Qwen3 的训练数据规模接近其两倍,总量约达 36 万亿 token,覆盖 119 种语言和方言。该数据集的构建不仅依赖网络公开数据,还创新性地采用多模态技术——通过 Qwen2.5-VL 模型从 PDF 文档中提取文本信息,并借助 Qwen2.5 模型对提取内容进行质量优化。为增强数学与代码数据的多样性,研发团队专门运用 Qwen2.5-Math 和 Qwen2.5-Coder 两个领域专家模型,合成了包括教科书、问答对及代码片段在内的多种结构化数据。(数据还是相当的重要)

预训练流程采用三阶段渐进式设计。第一阶段(S1)在超过 30 万亿 token、4K 上下文长度的设定下进行,奠定基础语言能力与通用知识框架。第二阶段(S2)重点优化数据分布,显著提升 STEM、编程及推理类知识密集型数据的权重,随后完成额外 5 万亿 token 的强化训练。最终阶段引入高质量长文本数据,将模型上下文窗口扩展至 32K token,使其具备处理复杂长文本输入的卓越能力。

后训练

为了开发兼具深度推理与快速响应能力的混合模型,研究团队设计了一套四阶段训练流程,包括:(1)长思维链冷启动,(2)长思维链强化学习,(3)思维模式融合,以及(4)通用强化学习。  

在初始阶段,模型通过数学、代码、逻辑推理及 STEM 问题等多样化的长思维链数据进行微调,从而建立基础推理能力。随后进入第二阶段,采用基于规则的奖励机制进行大规模强化学习(个人理解应该就是类似GRPO,基于规则进行奖励),以增强模型的探索与深度分析能力。  

第三阶段采用混合训练策略,将长思维链数据与常规指令微调数据结合,实现推理模式与快速响应模式的无缝融合(这种训练方式也比较常见)。最终阶段则聚焦通用能力优化,在指令遵循、格式规范及 Agent 能力等 20 多个任务领域实施强化学习,进一步提升模型性能并修正潜在缺陷。

快速使用

  • 安装最新transformer版本(transformers<4.51.0)

  • hugging face方式使用

from modelscope import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen3-1.7B"# load the tokenizer and the modeltokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained(    model_name,    torch_dtype="auto",    device_map="auto")# prepare the model inputprompt = "Give me a short introduction to large language model."messages = [    {"role": "user", "content": prompt}]text = tokenizer.apply_chat_template(    messages,    tokenize=False,    add_generation_prompt=True,    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.)model_inputs = tokenizer([text], return_tensors="pt").to(model.device)# conduct text completiongenerated_ids = model.generate(    **model_inputs,    max_new_tokens=32768)output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking contenttry:    # rindex finding 151668 (</think>)    index = len(output_ids) - output_ids[::-1].index(151668)except ValueError:    index = 0thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")print("thinking content:", thinking_content)print("content:", content)
  • SGLang(sglang>=0.4.6.post1)

    SGLANG_USE_MODELSCOPE=1 python -m sglang.launch_server --model-path Qwen/Qwen3-1.7B --reasoning-parser qwen3
  • vLLM

    VLLM_USE_MODELSCOPE=1 vllm serve Qwen/Qwen3-1.7B --enable-reasoning --reasoning-parser deepseek_r1

思考模式和非思考模式之间切换

    默认情况下,Qwen3 启用了思考能力,类似于 QwQ-32B。这意味着模型将利用其推理能力来提高生成响应的质量。例如,在 tokenizer.apply_chat_template 中显式设置 enable_thinking=True 或保持默认值时,模型将进入思考模式。

# 思考模型text = tokenizer.apply_chat_template(    messages,    tokenize=False,    add_generation_prompt=True,    enable_thinking=True  # True is the default value for enable_thinking)

   在这种模式下,模型将生成用 <think>...</think> 块包裹的思考内容,然后是最终的响应(类似DeepSeek-R1)。​​​​​​​

# 非思考模型text = tokenizer.apply_chat_template(    messages,    tokenize=False,    add_generation_prompt=True,    enable_thinking=False  # Setting enable_thinking=False disables thinking mode)

个人见解

    总体上Qwen3在模型的架构上并没有太多可以深究的亮点,其性能提升大概率还是基于数据层面的提升(token数量从18万亿提升到36万亿),纯个人理解,不喜勿喷。

 

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值