瓦斯浓度预测 | 基于双向时间卷积网络-长短期记忆神经网络BiTCN-LSTM实现瓦斯浓度多输入单输出预测matlab代码

预测效果

在这里插入图片描述

模型背景

瓦斯,作为煤矿开采过程中一种常见的灾害性气体,其主要构成成分甲烷因其易燃易爆的特性,对矿工的生命安全及煤矿的生产效率构成了重大威胁。精确预测瓦斯浓度不仅是预防瓦斯爆炸等安全事故的关键,也是确保矿工生命安全和提升生产效率的重要手段。近年来,随着人工智能技术的蓬勃进步,尤其是神经网络模型的应用,瓦斯浓度预测领域取得了突破性进展。

瓦斯浓度预测确实是煤矿安全生产不可或缺的一环,其准确性直接关系到瓦斯事故的预防效果。本文提出的基于双向时间卷积网络-长短期记忆神经网络(BiTCN-LSTM)的瓦斯浓度多输入单输出预测模型,为这一领域带来了新的突破。

模型解析
双向时间卷积网络(BiTCN)
BiTCN的设计旨在从时间序列数据中提取丰富的特征信息。双向结构意味着模型能够同时考虑时间序列的正向和反向信息,从而更全面地捕捉数据的动态特性。时间卷积网络(TCN)则通过卷积操作,有效提取时间序列的局部特征,并通过逐层叠加,逐步构建全局特征。这种特性使得BiTCN在瓦斯浓度预测中能够准确捕捉数据中的细微变化和整体趋势。

长短期记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值