预测效果
模型背景
瓦斯,作为煤矿开采过程中一种常见的灾害性气体,其主要构成成分甲烷因其易燃易爆的特性,对矿工的生命安全及煤矿的生产效率构成了重大威胁。精确预测瓦斯浓度不仅是预防瓦斯爆炸等安全事故的关键,也是确保矿工生命安全和提升生产效率的重要手段。近年来,随着人工智能技术的蓬勃进步,尤其是神经网络模型的应用,瓦斯浓度预测领域取得了突破性进展。
瓦斯浓度预测确实是煤矿安全生产不可或缺的一环,其准确性直接关系到瓦斯事故的预防效果。本文提出的基于双向时间卷积网络-长短期记忆神经网络(BiTCN-LSTM)的瓦斯浓度多输入单输出预测模型,为这一领域带来了新的突破。
模型解析
双向时间卷积网络(BiTCN)
BiTCN的设计旨在从时间序列数据中提取丰富的特征信息。双向结构意味着模型能够同时考虑时间序列的正向和反向信息,从而更全面地捕捉数据的动态特性。时间卷积网络(TCN)则通过卷积操作,有效提取时间序列的局部特征,并通过逐层叠加,逐步构建全局特征。这种特性使得BiTCN在瓦斯浓度预测中能够准确捕捉数据中的细微变化和整体趋势。
长短期记