“ 本文讨论什么是AI智能体、以及如何实现。”
一、什么是 AI 智能体
AI 智能体(Agent)是一种自主运行的人工智能系统,能够感知环境、做出决策并执行特定任务。它通常以任务驱动为核心,结合人工智能技术,实现高效的交互和智能化的服务。
二、AI 智能体的关键特性
1. 感知能力(Perception)
AI 智能体能够通过传感器或数据接口获取外部信息,例如语音输入、图像识别或文本数据:
-
语音输入:智能音箱识别“今天天气怎么样”。
-
图像识别:自动驾驶汽车识别红绿灯、行人和交通标志。
-
文本数据:聊天机器人分析用户输入“退款流程是什么?”并提取主要需求。
2. 决策能力(Decision-Making)
AI 智能体基于获取的信息进行分析并做出决策:
-
电商推荐:根据用户浏览历史推荐相关商品。
-
股票交易系统:根据市场波动判断买入或卖出股票。
-
游戏 AI:在对战游戏中动态调整策略,例如攻击或防御。
3. 执行能力(Action Execution)
根据决策结果,AI 智能体能采取实际行动:
-
智能客服:生成回复,例如“您的订单将在2天内送达。”
-
机器人操作:控制机械手臂完成包装或装配任务。
-
智能家居:调整空调温度或打开灯光。
4. 自适应能力(Adaptability)
AI 智能体能够通过学习优化其行为:
-
教育助手:根据学生学习进度调整课程内容和难度。
-
聊天机器人:学习用户的语言习惯,提供更个性化的服务。
-
智能交通系统:根据实时交通状况调整红绿灯时间,缓解拥堵。
三、如何实现 AI 智能体
在实现 AI 智能体的过程中,Prompt 和 RAG(Retrieval Augmented Generation 检索增强生成)是两个核心技术,可以分别解决“如何设定 AI 行为”和“如何获取外部知识”的问题。
1、Prompt:设定 AI 的行为和交互方式
Prompt 是通过输入特定的指令或上下文引导语言模型生成期望的结果。
1. 明确 AI 的角色和目标
定义 AI 的角色,例如客服助手、健身教练或医疗顾问。
你是一个医疗问答助手,专注于回答健康问题,所有回答应简单易懂,并基于权威数据。
2. 动态生成 Prompt
动态结合用户输入调整行为。
用户的问题是:“感冒怎么办?”
请根据以下检索结果回答:
[感冒多喝水,多休息,可以服用对乙酰氨基酚缓解症状]
3. Few-shot Learning
提供示例引导模型生成输出:
示例1:
用户:发烧怎么办?
AI:多喝水,观察体温。如果超过39°C,请及时就医。
示例2:
用户:感冒怎么办?
AI:建议多休息,补充水分,适当服用解热药物。
2、RAG:动态获取外部知识
RAG 是一种结合知识检索和语言生成的技术框架,用于解决语言模型的知识盲区。
1. 构建知识库
-
数据来源:收集权威文档或网站内容。
-
数据格式化:将内容分块并生成嵌入向量。
2. 知识检索
- 使用向量检索工具进行相似度匹配。
3. 生成回答
- 用户问题 → 检索相关内容 → 结合生成答案。
示例:
-
用户问题:“孕妇能吃感冒药吗?”
-
检索结果:“孕妇应避免含伪麻黄碱的药物。”
-
最终回答:“孕妇感冒时避免含伪麻黄碱的药物,建议多休息并咨询医生。”
3、Prompt 和 RAG 的结合
1. 基础 Prompt 引导行为
Prompt 设定 AI 的角色与语气。
2. RAG 提供动态知识
检索知识库内容增强语言模型输出。
3. 结合生成答案
将检索内容嵌入 Prompt,提升准确性。
用户:孕妇可以吃感冒药吗?
AI:根据权威资料,孕妇感冒时应避免含伪麻黄碱的药物。建议咨询医生。
通过 Prompt 和 RAG 的结合,AI 智能体可以更好地理解用户需求,提供高效精准的服务。
四、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓