Qwen3 是最新发布的大语言模型系列,在推理、对话、工具调用、多语言处理等方面进行了全面升级。相比此前的 Qwen2.5 和 QwQ,Qwen3 在综合性能上有显著提升。
主要特点包括:
-
模型规模多样:涵盖 0.6B、1.7B、4B、8B、14B、32B 稠密模型,以及 30B-A3B、235B-A22B 的专家混合(MoE)模型。
-
思考模式与非思考模式切换:支持在复杂推理任务(思考模式)和高效闲聊任务(非思考模式)之间无缝切换。
-
推理与生成能力提升:在数学推理、代码生成、常识推理等方面,表现优于 Qwen2.5。
-
自然语言交互优化:在多轮对话、创意写作、角色扮演和指令跟随等场景中更加自然流畅。
-
多语言支持:覆盖 100 多种语言和方言,具备强大的多语言指令理解与翻译能力。
-
工具调用能力增强:在复杂 Agent 任务中展现出领先的开源性能,支持精准调用外部工具。
命名规则更新说明:
-
后训练(指令微调)模型不再使用 "-Instruct" 后缀。例如,
Qwen3-32B
相当于旧版的Qwen2.5-32B-Instruct
。 -
基础(未微调)模型名称以 "-Base" 结尾,如
Qwen3-14B-Base
。
发布历史
时间 | 发布内容 |
---|---|
2025.04.29 | Qwen3 系列发布 |
2024.09.19 | Qwen2.5 系列发布,新增 3B、14B、32B |
2024.06.06 | Qwen2 系列发布 |
2024.03.28 | 发布首个 MoE 模型 Qwen1.5-MoE-A2.7B |
2024.02.05 | Qwen1.5 系列发布 |
快速上手
使用 Hugging Face Transformers 框架,可以快速体验 Qwen3 模型。
示例代码:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
prompt = "Give me a short introduction to large language models."
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
print(tokenizer.decode(output_ids, skip_special_tokens=True))
默认启用思考模式(enable_thinking=True
),可根据需要调整。
部署支持
Qwen3 可在多种环境下高效部署,适配主流推理与部署框架:
框架 | 特点 |
---|---|
Transformers | 支持推理与微调,更新频繁 |
ModelScope | 国内高速下载,API 与 Transformers 类似 |
llama.cpp | 支持本地高效推理和 GGUF 格式 |
Ollama | 一键下载运行,提供 OpenAI 兼容 API |
SGLang / vLLM | 高吞吐量推理引擎,适合大规模部署 |
LMStudio | 桌面 GUI 工具,适配 GGUF 模型 |
MLX-LM | Apple Silicon 支持(适配 M1/M2/M3 芯片) |
示例:使用 vLLM 快速部署
vllm serve Qwen/Qwen3-8B --port 8000 --enable-reasoning-parser --reasoning-parser deepseek_r1
API 接口地址默认:http://localhost:8000/v1
应用与扩展
-
工具调用:通过 SGLang、vLLM、Transformers、llama.cpp 等框架,结合 Qwen-Agent 进行智能工具调用。
-
模型微调:支持使用 Axolotl、Unsloth、Swift、Llama-Factory 等主流训练工具进行 SFT、DPO、GRPO 等微调流程。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓