强化学习:状态-动作对的选择
1. 背景介绍
强化学习是机器学习的一个重要分支,它模拟生物通过与环境的交互来学习如何做出最优决策。在强化学习中,智能体(agent)通过观察环境状态(state),采取动作(action),并从环境反馈(reward)中学习。这个过程涉及到状态-动作对的选择,是实现智能体学习和决策的核心。
2. 核心概念与联系
2.1 状态(State)
状态是对环境在某一时刻的描述,它可以是离散的或连续的,是智能体决策的基础。
2.2 动作(Action)
动作是智能体在某状态下可以采取的行为,它可以改变环境状态。
2.3 奖励(Reward)
奖励是环境对智能体采取特定动作的即时反馈,是学习的驱动力。