强化学习:状态动作对的选择

强化学习:状态-动作对的选择

1. 背景介绍

强化学习是机器学习的一个重要分支,它模拟生物通过与环境的交互来学习如何做出最优决策。在强化学习中,智能体(agent)通过观察环境状态(state),采取动作(action),并从环境反馈(reward)中学习。这个过程涉及到状态-动作对的选择,是实现智能体学习和决策的核心。

2. 核心概念与联系

2.1 状态(State)

状态是对环境在某一时刻的描述,它可以是离散的或连续的,是智能体决策的基础。

2.2 动作(Action)

动作是智能体在某状态下可以采取的行为,它可以改变环境状态。

2.3 奖励(Reward)

奖励是环境对智能体采取特定动作的即时反馈,是学习的驱动力。

2.4 策略(Policy)

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值