异常检测, Anomaly Detection, 机器学习, Machine Learning, 数据挖掘, Data Mining, 统计学, Statistics, 监督学习, Unsupervised Learning, 算法原理, 代码实例, Python
1. 背景介绍
在当今数据爆炸的时代,异常检测作为一种重要的数据挖掘技术,在各个领域发挥着越来越重要的作用。异常检测是指从大量数据中识别出与众不同的数据点,这些数据点可能代表着异常事件、欺诈行为、系统故障等。
异常检测技术广泛应用于:
- 金融领域: 识别欺诈交易、信用风险评估
- 网络安全: 检测入侵行为、恶意软件攻击
- 医疗领域: 发现异常医疗记录、诊断疾病
- 工业领域: 预防设备故障、识别生产异常
传统的异常检测方法主要依赖于手工特征工程,需要专家对数据进行深入分析和理解,效率低下且难以适应复杂的数据场景。随着机器学习技术的快速发展,基于机器学习的异常检测方法逐渐成为主流,能够自动学习数据特征,提高检测精度和效率。
2. 核心概念与联系
异常检测的核心是识别数据中的异常点,这些异常点与正常数据点在特征分布上存在显著差异。