yolo11使用详细教程

1、YOLO11

YOLO11是Ultralytics推出的新一代计算机视觉模型,为YOLO家族树立了新的里程碑。以下是对YOLO11的详细介绍:

1.1、主要特性与优势

无与伦比的速度和精度:YOLO11的设计旨在实现快速运行而不牺牲精度。其优化的模型架构提供了快速的推理时间,使其适用于自动驾驶、安全系统和工业自动化等实时应用。YOLO11在速度和准确性之间取得了平衡,满足了需要快速决策的场景需求。 高级物体检测功能:YOLO11在复杂环境中的物体检测能力得到了显著提升。它能够容忍遮挡并更好地区分重叠物体,这对于城市监控或事件监控等拥挤环境中的应用至关重要。 应用多功能性:YOLO11不仅擅长对象检测,还具备实例分割、姿势估计和跟踪等高级功能。这种多功能性使其可应用于从医疗保健到农业的各个领域,提供了广泛的适用性。 增强的设计和计算效率:YOLO11在YOLOv9和YOLOv10的基础上进行了扩展,集成了卓越的架构框架、精炼的特征提取方法和优化的训练协议。它使用更少的参数实现了更高的平均精度(mAP)得分,提高了计算效率。 高效的部署能力:YOLO11的处理能力极其高效,适合在云端和边缘设备上部署。它提供了灵活性,可适应各种计算机视觉挑战。

1.2、技术创新

增强的特征提取:YOLO11采用改进的主干网络和颈部架构,提高了特征提取能力,以实现更精确的目标检测和更复杂的任务性能。 优化效率和速度:YOLO11引入了精细的架构设计和优化的训练流程,提供了更快的处理速度,并在准确性和性能之间保持了最佳平衡。 参数更少,精度更高:凭借模型设计的进步,YOLO11m在COCO数据集上实现了更高的平均精度均值(mAP),同时使用的参数比YOLOv8m少22%,从而在不影响精度的前提下提高了计算效率。 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统,确保了最大的灵活性。

1.3、应用领域

自动驾驶汽车:提高小目标和遮挡目标的检测能力,增强安全性和导航能力。 医疗保健:YOLO11的精确性有助于医学成像任务,如肿瘤检测,准确性至关重要。 零售和库存管理:跟踪客户行为,监控库存,并在零售环境中增强安全性。 监控:其速度和准确性使其适合实时监控和威胁检测。 机器人技术:YOLO11使机器人能够更好地导航环境并自主与目标互动。

综上所述,YOLO11以其出色的速度、精度、多功能性和计算效率,成为了Ultralytics迄今为止开发的最熟练的模型之一,为计算机视觉领域带来了新的突破。

(二)使用详情

1、应用服务

实例创建完成后,滑动下方滚动条,在实例右侧有应用服务按钮,点击打开界面。

打开界面如图

选择照片或视频,并上传相关内容,调整参数,点击运行即可。

2、结果详情

本次将使用下方示例进行演示

(三)模型训练

打开jupyterlab,修改并运行train_v11.py相关参数即可训练自己需要的模型,修改并运行test.py相关参数即可进行测试。

Pager

<think>好的,我现在需要回答用户关于查看YOLO模型输出示例的问题。首先,我应该回忆YOLO模型的输出结构。YOLO模型通常是单阶段检测器,输出包含边界框坐标、类别概率置信度。不同版本的YOLO可能有细微差别,比如YOLOv5YOLOv8的输出格式是否一致。 接下来,用户提到引用了几个资料,其中引用[3]提到导出YOLOX到ONNX,并使用了特定的预处理参数。引用[1]中的代码展示了如何加载模型并进行验证,输出metrics.box.map,这可能涉及模型评估后的指标,而不是直接的预测输出。引用[4]提到了自动训练工具,可能模型训练相关,但用户的问题是关于输出示例的。 我需要确定如何展示YOLO模型的输出示例。通常,模型推理后会返回一个张量,包含检测结果。例如,在YOLOv5中,输出的形状可能是(1, 8400, 85),其中85对应每个锚点的4个坐标、1个置信度80个类别概率。用户可能需要一个具体的代码示例,展示如何加载模型、进行预测并解析输出。 还需要考虑用户可能使用的框架,比如PyTorch或Ultralytics的YOLO接口。引用[1]中的代码使用了Ultralytics的YOLO类,调用model.val()进行验证,但用户现在需要的是预测的输出示例,应该使用model.predict()方法。例如: results = model.predict("image.jpg") print(results) 然后解析results对象,提取边界框、置信度类别。此外,可以展示如何将输出可视化到图像上,使用OpenCV或matplotlib绘制边界框标签。 用户可能遇到的问题包括输出的张量结构不理解,如何处理多个检测框,以及如何过滤低置信度的检测结果。因此,在回答中需要解释输出的维度含义,并展示非极大值抑制(NMS)的应用,或者直接使用库内置的方法来获取结构化结果。 另外,引用[3]提到了导出到ONNX,可能用户也有兴趣了解ONNX模型的输出结构,但问题主要是关于示例结果,所以可能只需提到不同格式的输出结构相似,但具体实现可能不同。 总结回答的结构: 1. 解释YOLO输出的一般结构(坐标、置信度、类别)。 2. 提供使用Ultralytics库的代码示例进行预测并输出结果。 3. 解析输出结果,展示如何获取边界框、置信度类别。 4. 可能展示可视化步骤。 5. 引用相关的资料,比如引用[1][3]中的模型加载预处理步骤。 需要注意使用正确的LaTeX格式,比如变量用$...$包裹,独立公式用$$...$$。但这个问题可能不需要数学公式,更多是代码结构说明。所以主要确保代码块正确,中文回答清晰,并生成相关问题。</think>### YOLO模型输出示例解析 YOLO模型的输出通常包含目标检测的边界框坐标、置信度及类别概率。以Ultralytics的YOLOv8为例,模型推理后会返回一个`Results`对象,包含结构化数据[^1][^3]。 #### 示例代码及输出解析 ```python from ultralytics import YOLO import cv2 # 加载预训练模型 model = YOLO("yolov8n.pt") # 单张图像推理 results = model.predict("test_image.jpg") # 遍历检测结果 for result in results: boxes = result.boxes.xyxy # 边界框坐标 (x1,y1,x2,y2) conf = result.boxes.conf # 置信度 cls = result.boxes.cls # 类别ID names = model.names # 类别名称映射字典 # 打印前5个检测结果 for i in range(min(5, len(boxes))): print(f"目标{i+1}: 类别={names[int(cls[i])]}, 置信度={conf[i]:.2f}, 坐标={boxes[i]}") ``` #### 输出示例 ``` 目标1: 类别=person, 置信度=0.92, 坐标=[123.5 45.2 200.1 300.7] 目标2: 类别=car, 置信度=0.87, 坐标=[50.3 150.8 180.5 220.0] ... ``` #### 可视化结果 ```python # 绘制检测框并保存 annotated_image = results[0].plot() cv2.imwrite("output.jpg", annotated_image) ``` #### 输出张量结构 若直接访问原始输出(如ONNX模型),输出张量维度通常为$[1, N, 85]$,其中$N$为锚点数量,每行包含: $$(x_{\text{center}}, y_{\text{center}}, w, h, \text{confidence}, \text{class}_1, \dots, \text{class}_{80})$$ 需通过后处理(如非极大值抑制)过滤冗余检测框[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值