前言
本文中,我们会通过一个简单的例子来展示如何使用 langchain
来调用大模型的 chat
API(使用 Chat Model
)。 这个例子前面也有使用过,但是前面还没有针对里面的内容进行详细的说明。
配置 key
的文档请看 langchain 入门指南(一)
依赖安装
pip install -U langchain-openai
示例
下面的 ChatOpenAI
表示我们要使用的是 Chat Model
,顾名思义,这个模型是用来进行对话的,这也是我们最常用的一种模型。
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage
chat = ChatOpenAI(
model="yi-large",
temperature=0.3,
max_tokens=200,
api_key='your key',
base_url="https://api.lingyiwanwu.com/v1"
)
messages = [
SystemMessage(content="你是一名精通了 golang 的专家"),
HumanMessage(content="写一个 golang 的 hello world 程序"),
]
response = chat.invoke(messages)
print(response.content)
ChatOpenAI 说明
使用 ChatOpenAI
类,我们可以调用 chat
API。ChatOpenAI
类的构造函数有以下参数:
ChatOpenAI 参数
-
model
:模型名称,例如yi-large
(零一万物),gpt-3.5-turbo
(OpenAI HK)等。 -
temperature
:用于控制生成文本的多样性,值越大,生成的文本越多样化。 -
max_tokens
:生成文本的最大长度。(我们的输入和 LLM 的输出都需要消耗token
数,所以如果只是测试,可以控制一下输出的token
数量) -
api_key
:API 密钥(支持多种,不只是 OpenAI 的)。不填写的话,会从环境变量中读取(对应的环境变量是OPENAI_API_KEY
)。 -
base_url
:API 的接口地址。不填写的话,会从环境变量中读取(对应的环境变量是OPENAI_BASE_URL
)。 -
timeout
:超时时间,单位是秒。 -
max_retries
: 最大重试次数。
invoke 方法的参数说明
我们可以看到上面的例子传递了一个 messages
参数,这个参数是一个列表,里面包含了 HumanMessage
和 SystemMessage
。
在其他地方,我们可能会看到其他形式的参数,它实际上也支持很多种形式,例如:
元组列表
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(
model="yi-large",
temperature=0.3,
max_tokens=200,
api_key='your key',
base_url="https://api.lingyiwanwu.com/v1",
)
messages = [
('system', '你是一名精通了 golang 的专家'),
('human', '写一个 golang 的 hello world 程序')
]
response = chat.invoke(messages)
print(response.content)
BaseMessage 列表
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage
chat = ChatOpenAI(
model="yi-large",
temperature=0.3,
max_tokens=200,
api_key='your key',
base_url="https://api.lingyiwanwu.com/v1",
)
messages = [
SystemMessage(content="你是一名精通了 golang 的专家"),
HumanMessage(content="写一个 golang 的 hello world 程序"),
]
response = chat.invoke(messages)
print(response.content)
字符串
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(
model="yi-large",
temperature=0.3,
max_tokens=200,
api_key='your key',
base_url="https://api.lingyiwanwu.com/v1",
)
# 这个字符串参数会被转换为 HumanMessage
response = chat.invoke('使用 golang 写一个 hello world 程序')
print(response.content)
字符串列表
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(
model="yi-large",
temperature=0.3,
max_tokens=200,
api_key='your key',
base_url="https://api.lingyiwanwu.com/v1",
)
messages = [
"你是一名精通了 golang 的专家",
"写一个 golang 的 hello world 程序",
]
response = chat.invoke(messages)
print(response.content)
invoke 方法的返回值
上面是直接打印了返回值的 content
属性,实际上返回值中包含了其他一些有用的信息:
{
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "<...省略...>",
"response_metadata": {
"token_usage": {
"completion_tokens": 200,
"prompt_tokens": 35,
"total_tokens": 235
},
"model_name": "yi-large",
"system_fingerprint": null,
"finish_reason": "length",
"logprobs": null
},
"type": "ai",
"id": "run-29131a4f-e792-4c9e-8cf5-490afed94176-0",
"usage_metadata": {
"input_tokens": 35,
"output_tokens": 200,
"total_tokens": 235
},
"tool_calls": [],
"invalid_tool_calls": []
}
}
一些字段说明:
-
completion_tokens
/output_tokens
是生成的文本的token
数量。 -
prompt_tokens
/input_tokens
是输入的token
数量。 -
total_tokens
是单次请求总的token
数量。
在实际的应用中,我们需要注意使用的 token
的数量,防止消耗太多的 token
,因为 token
是要花钱来购买的。 如果我们是为其他人提供服务,可能就需要针对不同的用户来统计 token
的使用情况,以便计费。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】