langchain 入门指南(二)- 如何跟大模型对话

前言

本文中,我们会通过一个简单的例子来展示如何使用 langchain 来调用大模型的 chat API(使用 Chat Model)。 这个例子前面也有使用过,但是前面还没有针对里面的内容进行详细的说明。

配置 key 的文档请看 langchain 入门指南(一)

依赖安装

pip install -U langchain-openai  

示例

下面的 ChatOpenAI 表示我们要使用的是 Chat Model,顾名思义,这个模型是用来进行对话的,这也是我们最常用的一种模型。

from langchain_openai import ChatOpenAI  
from langchain_core.messages import HumanMessage, SystemMessage  
  
chat = ChatOpenAI(  
    model="yi-large",  
    temperature=0.3,  
    max_tokens=200,  
    api_key='your key',  
    base_url="https://api.lingyiwanwu.com/v1"  
)  
  
messages = [  
    SystemMessage(content="你是一名精通了 golang 的专家"),  
    HumanMessage(content="写一个  golang 的 hello world 程序"),  
]  
  
response = chat.invoke(messages)  
  
print(response.content)  

ChatOpenAI 说明

使用 ChatOpenAI 类,我们可以调用 chat API。ChatOpenAI 类的构造函数有以下参数:

ChatOpenAI 参数

  • model:模型名称,例如 yi-large(零一万物),gpt-3.5-turbo(OpenAI HK)等。

  • temperature:用于控制生成文本的多样性,值越大,生成的文本越多样化。

  • max_tokens:生成文本的最大长度。(我们的输入和 LLM 的输出都需要消耗 token,所以如果只是测试,可以控制一下输出的 token 数量)

  • api_key:API 密钥(支持多种,不只是 OpenAI 的)。不填写的话,会从环境变量中读取(对应的环境变量是 OPENAI_API_KEY)。

  • base_url:API 的接口地址。不填写的话,会从环境变量中读取(对应的环境变量是 OPENAI_BASE_URL)。

  • timeout:超时时间,单位是秒。

  • max_retries: 最大重试次数。

invoke 方法的参数说明

我们可以看到上面的例子传递了一个 messages 参数,这个参数是一个列表,里面包含了 HumanMessageSystemMessage

在其他地方,我们可能会看到其他形式的参数,它实际上也支持很多种形式,例如:

元组列表
from langchain_openai import ChatOpenAI  
  
chat = ChatOpenAI(  
    model="yi-large",  
    temperature=0.3,  
    max_tokens=200,  
    api_key='your key',  
    base_url="https://api.lingyiwanwu.com/v1",  
)  
  
messages = [  
    ('system', '你是一名精通了 golang 的专家'),  
    ('human', '写一个  golang 的 hello world 程序')  
]  
  
response = chat.invoke(messages)  
  
print(response.content)  

BaseMessage 列表
from langchain_openai import ChatOpenAI  
from langchain_core.messages import HumanMessage, SystemMessage  
  
chat = ChatOpenAI(  
    model="yi-large",  
    temperature=0.3,  
    max_tokens=200,  
    api_key='your key',  
    base_url="https://api.lingyiwanwu.com/v1",  
)  
  
messages = [  
    SystemMessage(content="你是一名精通了 golang 的专家"),  
    HumanMessage(content="写一个  golang 的 hello world 程序"),  
]  
  
response = chat.invoke(messages)  
  
print(response.content)  

字符串
from langchain_openai import ChatOpenAI  
  
chat = ChatOpenAI(  
    model="yi-large",  
    temperature=0.3,  
    max_tokens=200,  
    api_key='your key',  
    base_url="https://api.lingyiwanwu.com/v1",  
)  
  
# 这个字符串参数会被转换为 HumanMessage  
response = chat.invoke('使用 golang 写一个 hello world 程序')  
  
print(response.content)  

字符串列表
from langchain_openai import ChatOpenAI  
  
chat = ChatOpenAI(  
    model="yi-large",  
    temperature=0.3,  
    max_tokens=200,  
    api_key='your key',  
    base_url="https://api.lingyiwanwu.com/v1",  
)  
  
messages = [  
    "你是一名精通了 golang 的专家",  
    "写一个  golang 的 hello world 程序",  
]  
  
response = chat.invoke(messages)  
  
print(response.content)  

invoke 方法的返回值

上面是直接打印了返回值的 content 属性,实际上返回值中包含了其他一些有用的信息:

{  
  "lc": 1,  
  "type": "constructor",  
  "id": [  
    "langchain",  
    "schema",  
    "messages",  
    "AIMessage"  
  ],  
  "kwargs": {  
    "content": "<...省略...>",  
    "response_metadata": {  
      "token_usage": {  
        "completion_tokens": 200,  
        "prompt_tokens": 35,  
        "total_tokens": 235  
      },  
      "model_name": "yi-large",  
      "system_fingerprint": null,  
      "finish_reason": "length",  
      "logprobs": null  
    },  
    "type": "ai",  
    "id": "run-29131a4f-e792-4c9e-8cf5-490afed94176-0",  
    "usage_metadata": {  
      "input_tokens": 35,  
      "output_tokens": 200,  
      "total_tokens": 235  
    },  
    "tool_calls": [],  
    "invalid_tool_calls": []  
  }  
}  

一些字段说明:

  • completion_tokens/output_tokens 是生成的文本的 token 数量。

  • prompt_tokens/input_tokens 是输入的 token 数量。

  • total_tokens 是单次请求总的 token 数量。

在实际的应用中,我们需要注意使用的 token 的数量,防止消耗太多的 token,因为 token 是要花钱来购买的。 如果我们是为其他人提供服务,可能就需要针对不同的用户来统计 token 的使用情况,以便计费。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值