5分钟带你看懂大模型RAG、知识库和知识图谱,建议收藏!

RAG(Retrieval-Augmented Generation,检索增强生成)技术通过检索增强生成,显著提升了知识问答的准确性和时效性。在构建知识库时,RAG通过向量数据库和动态更新机制,实现了高效的知识检索与生成;在构建知识图谱时,RAG通过GraphRAG和Graphusion等框架,实现了实体关系的精准抽取与图谱融合。

在这里插入图片描述

一、RAG

RAG(Retrieval-Augmented Generation,检索增强生成)是什么?RAG是一种结合信息检索与文本生成的人工智能技术,旨在通过引入外部知识库,解决大语言模型的幻觉问题。

RAG的核心目标是让大语言模型(LLM)在回答问题时不再仅依赖训练时的固化知识,而是动态检索最新或特定领域的资料来辅助生成答案。

RAG结合了信息检索与生成模型,通过以下三阶段工作:检索:从外部知识库(如文档、数据库)中搜索与问题相关的信息。增强:将检索结果作为上下文输入,辅助生成模型理解问题背景。生成:基于检索内容和模型自身知识,生成连贯、准确的回答。在这里插入图片描述

Prompt + RAG 如何实战?结合 Prompt 工程与 RAG(检索增强生成) 的实战应用需围绕数据准备、检索优化、生成控制等环节展开。

一、数据准备与向量化

  1. 文档预处理与分块

文档预处理通过多模态数据清洗、词形还原与依存句法分析实现文本规范化;分块环节采用递归分割与语义边界识别技术,结合知识图谱关联优化,构建动态重叠的上下文连贯单元,以平衡检索效率与信息完整性。

# 依赖安装:pip install langchain langchain-text-splittersfrom langchain_text_splitters import RecursiveCharacterTextSplitter# 示例长文本(替换为实际文本)text = """自然语言处理(NLP)是人工智能领域的重要分支,涉及文本分析、机器翻译和情感分析等任务。分块技术可将长文本拆分为逻辑连贯的语义单元,便于后续处理。"""# 初始化递归分块器(块大小300字符,重叠50字符保持上下文)text_splitter = RecursiveCharacterTextSplitter(    chunk_size=300,    chunk_overlap=50,    separators=["\n\n", "\n", "。", "!", "?"]  # 优先按段落/句子分界[2,4](@ref))# 执行分块chunks = text_splitter.split_text(text)# 打印分块结果for i, chunk in enumerate(chunks):    print(f"Chunk {i+1}:\n{chunk}\n{'-'*50}")
  1. 向量化与存储

向量化通过Embedding模型将非结构化数据(文本、图像等)映射为高维语义向量,存储则依托专用向量数据库(如ElasticSearch的dense_vector字段、Milvus)构建高效索引(HNSW、FAISS),支持近似最近邻搜索(ANN)实现大规模向量数据的快速相似性匹配。

# 依赖安装:pip install sentence-transformers faiss-cpufrom sentence_transformers import SentenceTransformerfrom langchain_community.vectorstores import FAISS# 1. 文本向量化(使用MiniLM-L6预训练模型)model = SentenceTransformer('paraphrase-MiniLM-L6-v2')embeddings = model.encode(chunks)# 2. 向量存储到FAISS索引库vector_db = FAISS.from_texts(    texts=chunks,    embedding=embeddings,    metadatas=[{"source": "web_data"}] * len(chunks)  # 可添加元数据)# 保存索引到本地vector_db.save_local("my_vector_db")# 示例查询:检索相似文本query = "什么是自然语言处理?"query_embedding = model.encode([query])scores, indices = vector_db.similarity_search_with_score(query_embedding, k=3)print(f"Top 3相似块:{indices}")

二、检索优化技术

通过多路召回(如混合检索、HyDE改写、动态重排)提升查全率与排序质量,并利用上下文增强(知识图谱补充关系、指令级RAG动态生成Prompt)优化检索结果。

三、Prompt 工程实践

  1. 结构化输入设计

基于角色和场景进行约束,例如法律顾问角色与合同条款咨询场景,结合《民法典》第580条知识单元,通过“用户问题→检索知识→逻辑关联→生成答案”的思维链,分点解释并标注引用来源。

  1. 输出模版控制

通过预设模板化输出框架确保格式规范,并设置动态防护栏机制过滤敏感词与校验事实一致性,实现内容生成的安全性与合规性。

img

二、知识库和知识图谱

知识库(Knowledge Base)是什么?知识库是结构化、易操作的知识集群,通过系统性整合领域相关知识(如理论、事实、规则等),为问题求解、决策支持和知识共享提供基础平台。

RAG构建知识库的核心在于将外部知识检索与大语言模型生成能力结合,通过高效检索为生成提供上下文支持,从而提升答案的准确性和时效性。(实战的重点在文本分块Chunking和向量化Embedding)

1. 文本分块(Chunking)

文本分块是将长文本分割为较小、可管理的片段,以便更高效地处理和分析。

2. 向量化(Embedding)

向量化是将文本或数据映射为高维向量空间中的数值表示,以捕获语义特征。

在这里插入图片描述

知识图谱(Knowledge Graph)是什么?知识图谱是一种通过实体与关系构建的语义化网络结构,支持推理与复杂查询,而传统知识库多以非关联的扁平化方式存储数据。

RAG构建知识图谱的核心是通过结合检索技术与大语言模型(LLM),将外部知识库中的结构化与非结构化数据整合为图谱形式。知识图谱为RAG系统注入结构化推理能力,使其从“信息检索器”进化为“知识推理引擎”。

RAG构建知识图谱的关键在于检索与生成的协同,其流程包括:

  • 数据预处理:将文档分割为文本块(chunking),并通过命名实体识别(NER)提取实体与关系.
  • 知识图谱索引:基于提取的实体与关系,构建初始知识图谱后,运用聚类算法(例如Leiden算法)对图谱中的节点进行社区划分。
  • 检索增强:在用户查询时,通过本地搜索(基于实体)或全局搜索(基于数据集主题)增强上下文,提升生成答案的准确性。Graph RAG: Unleashing the Power of Knowledge Graphs with LLM | by  NebulaGraph Database | Medium

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值