AI大模型到底有多烧钱?
或许最有发言权的就是OpenAI了,2022年其亏损大约翻了一番,达到约5.4亿美元。据悉,Altman曾私下建议,OpenAI可能会在未来几年尝试筹集多达1000亿美元的资金,以实现其开发足够先进的通用人工智能。
国内的AI公司也不例外。不完全统计,国内头部AI公司智谱AI、百川智能、零一万物、MiniMax和月之暗面,从去年下半年至今已完成了总额超30亿美元的融资,当然,他们也公开表示,在通往AGI的路上,这些钱还远远不够。
然而,商业世界没有人是愿意做慈善、搞科研的,甚至没人比企业家、投资人更看中落地变现和投资回报比。那么在烧够钱之后,企业该如何通向赚麻了?在业内人士看来,他们逃不过以下几种变现模式。
“有求必应”的小助手-订阅服务
订阅服务是目前AI大模型公司商业化的最普遍方式,即采用按tokens或按月、按调用次数收费的订阅模式,为客户提供大模型应用的访问权限。许多AI大模型公司为此推出了各式各样的AI应用。
在通用AI应用方面,具有代表性的有OpenAI的ChatGPT、百度的文心一言、阿里的通义千问、科大讯飞的讯飞星火等。这些应用均扮演了对话问答助手的角色,可以为客户提供文本生成、信息检索、对话交互等服务。
在创意工具型AI应用方面,OpenAI推出了大火的文生视频工具Sora,国内比较有代表性的有文生图像的文心一格、剪映Dreamina等。
另外,也有公司将目光聚集在教育、医疗等专业领域,做垂直大模型。例如专注于零售、物流领域的京东言犀大模型;深耕医疗领域的京医千寻;还有教育领域的网易AI教师“小P老师”等。
拿ChatGPT举例,目前有两种计费模式,即包月和按tokens收费。包月模式下给用户提供ChatGPT Plus的使用权限,费用为20美元/月。按tokens收费模式下为用户提供多种API接口,费用为每1000tokens收费0.002美元。
“装备附魔”-增值服务
目前,许多互联网巨头公司将大模型集成到自己现有的产品和服务中,为自己的传统业务“镀金”,利用AI实现高屋建瓴。
比如百度文库文档助手、淘宝问问、New Bing搜索引擎、腾讯会议AI小助手、WPS AI助手等。通过AI为传统业务赋能,来更多地吸引用户,增加用户粘性并带动营收增长。
这里面比较有代表性的是微软基于GPT-4技术开发的AI升级版必应搜索引擎New Bing。利用AI的“附魔”,New Bing可以为客户提供更准确的搜索结果并能理解更复杂的、更模糊的查询指令,此外,New Bing还具备文生图像的功能。
“拎包入住”-MaaS(模型即服务)
MaaS的出现大大解决了大模型落地与推广的难题。
MaaS模式是一种云计算厂商将AI大模型作为一种产品提供给用户使用的商业模式,云厂商可以将预先训练好的大模型“打包”,通过简单的应用程序接口(API或SDKs),对外提供服务,虽然提供的是API,但是本质上调用的是模型。
用户们可以按照自身的业务需求,直接调用大模型,将自己的需求嵌入已有的应用和服务中进行微调,即可让大模型为自己的业务赋能。
这种方式使得用户不需要过多了解模型的技术细节,也不用付出研发成本,只需像调用云能力一样,直接调用服务。对大模型公司来讲,此方式解决了大模型变现难的问题,同时也可吸纳用户们的使用数据来“反哺”自身,利于大模型的升级和迭代,可谓是“双赢”。
目前,文心、通义、盘古等大模型厂商,基本都在提供此类服务,比如阿里的魔搭社区,百度的飞桨等等。
2022年,阿里云建立了ModelScope社区(魔搭社区),汇集开源开放的优质预训练模型,并提供了API调用模型,极大地方便了用户的使用。之后推出的大模型调用工具ModelScopeGPT,用户可以一键发送指令调用魔搭社区中其他的人工智能模型,从而实现大小模型的共同协作。
“创意工坊”-开源模式
开源是目前计算机领域一种普遍的软件开发模式,大量开发者在协议许可的情况下对开源代码进行修改,并集成到已有的系统中,为软件和系统增加新功能和特性。
AI大模型公司通过将计算机程序、软件的源代码等内容公开,并根据开源协议进行分发,培养大量的开发者。
开源本身是免费的,但涉及到后续的数据训练、数据监督、数据微调等等,大模型公司则有较为明朗的收费模式。
在开源的模式下,可以快速共享好成果,让好的成果快速培养社区,下游用户利用开源成果,可以快速搭建自己的应用系统。目前,国外有Apache MXNet、Caffe/2+PyTorch、TensorFlow等;国内有OpenI启智平台、百度的PaddlePaddle等。同时,智谱AI、阿里通义都在强调开源的价值。
拿TensorFlow举例,TensorFlow是由Google开发的开源机器学习框架,主要用于深度学习和神经网络的建模、训练和部署。
TensorFlow为开发者提供了丰富的API、庞大的社区、分布式计算和GPU加速功能,同时可以兼容多种操作系统。
AI Agent(人工智能体)
2024年3月13日,由OpenAI投资的机器人公司Figure发布了一段视频demo,视频里的机器人,不仅可以与人进行对话交互,理解人类的意图,同时还能理解人的自然语言指令进行抓取和放置行为,而且还拥有记忆力。这意味着AI度尽劫波终于修成了“肉身”。
很多人认为AI Agent是AI大模型公司商业化的最终形态,它意味着大模型在真正的应用层面走进千家万户。
大模型公司的商业化道路还处于探索阶段,如同每种新技术的初始阶段,限于成本等因素,总是B端客户愿意为效果买单,但目前B端应用开发的阻力很大,B端市场有更多对于AI安全性的考量。
是继续加大力度寻求scaling law的规模化,还是基于现有快速演进的大模型加速商业化,也是摆在大模型公司面前的一道选择题。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓