【轻松部署】打造本地私有化知识库系统:在家快速安装Dify与FastGPT

大家好,今天我要和大家分享一个本地知识库DIY项目:如何在家搭建自己的基于AI大模型的知识库系统。听起来是不是有点高大上?别担心,跟着我一步步来,保证你也能轻松上手!

一、开篇:为什么要自己搭建本地知识库?

如果你有一个智能助手,能帮你管理资料、回答问题,甚至还能帮你写文章,那岂不是美滋滋?这就是我为什么要折腾这个项目的原因。而且,自己搭建的好处是,你可以完全掌控自己的数据,不用担心隐私泄露。

二、准备阶段:你需要什么?

在开始之前,你得准备几样东西:

  1. 一台电脑:配置较好的台式电脑或者Macbook Air都可以。

  2. Docker:这是一个可以让你轻松部署应用的工具,就像搭积木一样简单。

三、部署Dify和FastGPT:双管齐下

3.1 安装Dify

首先,我们来安装Dify。这个工具简单易用,就像泡咖啡一样轻松。

  1. 下载Dify:去GitHub找到Dify的页面,下载代码。

    地址:https://github.com/langgenius/dify.git。

  2. 启动Dify:在Dify的docker文件夹里,输入命令docker-compose up -d,然后坐等它自动下载和启动。

3.2 安装FastGPT

接下来是FastGPT,这个工具稍微复杂一点,但也别担心,跟着步骤来就行。

  1. 下载FastGPT:同样去GitHub下载,

    地址:https://github.com/labring/FastGPT.git

  2. 配置FastGPT:需要创建一个config.json文件,按照官方指南来。

  3. 启动FastGPT:输入命令docker-compose -f docker-compose-pgvector.yml up -d,然后你就可以通过浏览器访问FastGPT了。

四、配置你的本地知识库

安装完成后,你需要进行一些简单的配置。Dify和FastGPT都有详细的官方手册,跟着做就行。

五、本地部署 Ollama

前面的 Dify 和 FastGPT 都已经部署好了,现在轮到 Ollama 出场了!把 AI 模型部署在本地就像是为这场 AI 派对请来了一位“桥梁专家”,它能帮助不同的知识库联手合作,协同作战,让整个系统变得更智能、更高效。

5.1 安装Ollama

  1. 下载Ollama:去官网下载并安装。

  2. 运行Ollama:输入命令ollama run llama3.2:3b,然后你就可以和模型互动了。

5.2 Dify对接Ollama

  1. 打开Dify:进入设置,找到模型供应商。

  2. 配置Ollama:填写模型名称和基础URL,然后保存。

5.3 FastGPT对接Ollama

  1. 登录FastGPT:进入模型配置页面。

  2. 添加Ollama:选择Ollama,填写相关信息,然后保存。

六、大功告成!

现在,你的本地知识库系统已经搭建完成了!无论是管理资料、回答问题还是写文章,它都能帮你搞定。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值