Manus终于开放注册,曾经一个名额卖得比车还贵

图片

到底是真金不怕火炼,还是滥竽充数?一切用事实说话。‍‍

图片

“网红AI智能体”Manus 真的来了

AI行业终于有了新故事。

最近,AI智能体这个名词突然刷屏,先是OpenAI首席执行官萨姆·奥特曼为了AGI向马斯克低头,紧接着咱中国产品也有了重大进展——Manus正式向全球用户开放注册

早在今年3月,Manus这个名字便在科技圈掀起巨浪。刚出现时,它就被众多媒体奉为“第二个国运级AI产品”“比肩DeepSeek”的存在,甚至被央视网等权威媒体发文介绍。

图片

图源:微信

对于无数期待已久的用户来说,Manus的开放注册意味着他们终于可以亲自体验这款被炒得火热的产品了。

并且Manus的此次开放注册如过往不少AI产品的策略一样,提供了免费体验的机会。

根据官方公告,即日起,所有用户无需邀请码即可直接注册,每天可免费执行一项基础任务(价值300积分),仅当日有效不会累计。新用户注册还能一次性获得1000积分的奖励。

而Manus的付费订阅计划则分为3档,月费分别为19美元39美元199美元,对应基础功能扩展、算力优先调度、企业级API权限等服务,以吸引更多免费用户转化为付费用户。

图片

图源:Manus官网

从公告中可以看到,官方特意强调了“向所有人开放,无需等待名单”

这是由于Manus最开始一直处于内测阶段,仅限邀请码注册加上官方对于邀请码的发放相对保守,使得该软件的邀请码在国内基本属于“一码难求”。

在第三方交易平台上,Manus的邀请码一度被转卖至100000,甚至出现了企业采购价超5万美元的极端案例。并且,当时网友对这款软件的痴迷,还一度使得抖音等平台上出现了各式各样售卖邀请码的直播间。

图片

图源:抖音

如此疯狂的市场表现,让Manus在收获极高关注度的同时,也引来了众多网友及业内人士的质疑,他们纷纷指责Manus团队在搞“饥饿营销”

面对外界的质疑声,一位疑似Manus AI合伙人张涛不得不站出来澄清。他明确表示,Manus从未开设任何付费获取邀请码的渠道,采用邀请码机制完全是由于服务器容量有限,不得已而为之

这则声明并未完全平息外界的质疑,反而使得Manus背上了类似“半成品”的标签。

图片

Manus 风评反转?

更要命的是,当时对Manus的质疑不只是“饥饿营销”,因其团队此前主要是在国外社媒上宣传,并且就连官方宣传片也是以全英文内容形式输出,遭到了不少国内人士的质疑。

有人甚至把Manus称为“AI界冲击波”,认为其更像是一个为了吸引眼球而制造的话题产品,而非真正具有创新性的技术成果。

随后又有开发者指出,Manus依赖现有大模型(如ClaudeGPT-4等)API调用,未展示底层技术突破,反而更像是一个“集成式操作系统”。

这种观点迅速在网络上蔓延并且得到了许多网友的认同,甚至有人直言,Manus的爆火只是一种做高估值的手段,其背后公司根本没打算正经做一个AI产品。

而当时的实际情况也确实如此,Manus在网络上爆火后,其背后公司的估值暴涨,这无疑加剧了外界对其真实意图的怀疑。

图片

图源:抖音

面对这些质疑,Manus团队并未沉默。创始人季逸超先是在社交平台上解释,Manus产品实则使用了不同的基于阿里千问大模型(Qwen)的微调模型。

随后到了3月11日,Manus平台又正式宣布与阿里通义千问团队达成战略合作,双方计划基于通义千问系列开源模型,希望在国产模型和算力平台上实现Manus的全部功能。暂且算是对英文及套壳的解释。

而上述提到的那位Manus AI合伙人张涛也曾在社交平台上呼吁:“恳请大家对一家几十人的创业公司多一点包容和理解,团队正在全力输出,让大家早日体验上更好的产品。”官方的主动回应,打消了不少人心中的顾虑。

图片

图源:微博

如今,随着Manus宣布全球开放注册,一些谣言也不攻自破。

开放注册不仅意味着更多用户能够直接体验Manus的功能,更意味着Manus将接受更广泛市场的检验。

无论是技术上的突破,还是用户体验上的优化,Manus都面临着新的机遇和挑战。但有一点可以肯定的是,Manus团队正在努力打破质疑,用实际行动证明自己的实力。

图片

Manus 到底能干什么?

在经历了诸多风波之后的今天,Manus终于迎来了全球开放注册的时刻。但很多人可能仍然想问:Manus到底是什么?它能用来干什么?

首先,Manus是由中国创业公司Monica开发的一款通用型AI智能体产品。与传统的AI大模型不同,Manus的核心功能在于其能够自主规划并执行复杂任务,直接交付成果。

换句话说,Manus不是目前非常火爆的那种聊天机器人,而是一个能够真正“手脑并用”的智能助手。

用户只需给出一个简单的指令,Manus就能自动分解任务,调用各种工具,并最终输出符合用户需求的结果。例如,它可以自己撰写报告、制作PPT、规划旅行,甚至进行数据分析和编程。

事实上,不少第一时间拿到体验资格的博主在体验后都对这款产品给出了很高的评价。

图片

图源:微信

博主@刘润 曾模拟了一个任务,让Manus直接帮他招聘一位自己公众号的主笔。

Manus的表现令人惊叹:它首先分析了公众号的文章,总结出文风,并给出了岗位能力要求。随后,它在各个招聘平台搜索合适的候选人,并最终提供了一个候选人名单,甚至还包括说服不同候选人入职的话术。

整个过程无需人工干预,Manus自动理解需求、拆解任务、搜索信息并给出方案,其效率和专业性远超普通招聘人员。

另一位博主@快刀青衣 则是让Manus为一款笔记类APP制定三个月内的营销方案,要求不花一分钱,将日活跃人数从5万提高到20万。

Manus不仅迅速生成了营销方案,还根据APP的特征,制定了更适配的病毒式营销策略。快刀青衣表示,这个方案超过了市面上80%的营销方案,很多营销方式甚至与他当下团队正在做的完全一致。

从这些博主的演示中可以看到,Manus的主要工作流程为先理解用户发出的指令,然后会自动将任务拆分成多个小步骤,全程不需要额外干预,你甚至可以把它放在一边接着正常使用你的电脑,等待几分钟后来查看最终结果即可。

图片

图源:微信

听到这很多人可能意识到了,这不就是OpenAI的Deep Research吗?甚至谷歌今年更新的Gemini 2.5也能做到这种程度。

事实上,对于许多深耕科技圈的朋友来说,Manus的这种工作形式确实不算陌生,但无论怎样,它在3月初曝光时确实是当时全球唯一一个自称AI Agent的应用。

令人遗憾的是,截止目前发稿,Manus的中文版仍未对外开放,官网界面仅显示“Manus中文版本正在开发中”,即国内用户目前还无法大规模体验

图片

图源:Manus官网

Manus团队表示已经在努力推进中文版的开发,相信不久的将来,国内用户也能享受到这款产品的强大功能。在此,我们呼吁大家给Manus多一点时间,对自家的产品要有更多的包容。

Manus的出现本身就是一次大胆的尝试和创新,它不仅展示了AI智能体的潜力,也为未来的人机协作提供了新的思路。

尽管目前Manus还存在一些局限性,但它的未来值得期待。我们相信,随着技术的不断进步和团队的不懈努力,Manus将不断完善,为用户提供更加优质和高效的服务。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值