211本硕二战腾讯大模型算法岗,草草结束。。。

不同以往的是,当前职场已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结链接如下:

《算法工程师求职经验帖》正式发布!

背景

本弱鸡 211 本硕,nlp,无论文有实习(老板没资源且放养),本科有 acm 经历(1 铜),面试 pcg 日常实习。

一面

Q1:了解什么机器学习算法,讲一下原理?

当时只记得实体识别用到了隐马尔可夫模型,讲了讲怎么怎么定义观测状态和隐藏状态、前向传播、解码和应用场景。

Q2:讲一下 Bert 的结构和怎么训练的,怎么用 bert 做下游任务?

八股,双向 transformer encoder 结构,预训练任务包括 MLM 和 NSP,详细讲了讲。下游任务做过文本分类、关系提取等,用 cls 做预测;也可以做摘要生成等任务。

Q3:有没有了解过 LLM,有自己调过吗,了解 RLHF 过程吗?

自己训练过 llama3 和 glm(8、9B),跑过 sft 和 dpo,有看过一些技术报告。当时用 deepspeed 跑的,然后讲了讲 RLHF 三个过程,最后 PPO 四个模型的作用。

Q4:有了解强化学习吗?能不能详细说说 PPO 是什么?

只通过 RLHF 了解过一点,好像跟面试官想要的答案不一致,跳过。

Q5:怎么扩展大模型的最大输入长度?

改变 transformer 结构(GQA,MQA,flash attention等),旋转位置编码 RoPE 等(只看过论文,自己用的很少,就想到啥说啥)

Q6:有了解过模型训练方法吗?

没用过(感觉要凉)

Q7:有了解过文生图吗?

有了解过一些项目,diffusion 和 clip 原理,之前有自己跑过 unet+diffusion+vae 做文生图任务,讲了下为什么这么做。

Q8:手撕快排

当天晚上收到了参加二面的邮件,小激动。

二面

二面没有手撕代码,问了问项目:

讲一下微调大模型是怎么做的,数据集怎么构建,数据怎么处理

看项目中用了 RAG,讲一下设计流程

其中文本 chunk 怎么做的,为什么这么做

中间有没有遇到什么困难,怎么提高召回,如果文本输入大模型后效果不好怎么办

怎么提高大模型的外推性

有了解过文生图任务吗(怎么又问这个)

然后草草结束,一天后流程结束(挂了,继续努力)

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,用户想了解AI大模型在教育培训机构或教学中的应用场景,我需要根据提供的引用资料和相关知识来回答这个问题。首先,我需要确保回答结构清晰,分点说明,并且每个点都有具体的示例。同时,要注意引用资料的末尾添加引用标识,比如[^1][^2][^3]。 首先,回顾引用内容。引用1提到微调大模型和训练垂直模型的能力,引用2提到基于大模型的应用开发和部署技能,引用3则提到大模型在金融行业的应用和知识传播的问题。用户的问题是关于教育培训,所以需要将这些引用中的信息与教育场景结合起来。 接下来,我需要列举几个应用场景。可能的方面包括个性化学习、智能辅导、内容生成、教学评估、语言学习、虚拟教师、课程开发、学习分析等。每个场景都需要具体的例子,比如使用大模型生成练习题或提供实时答疑,这符合引用2中的Fine-tuning垂直训练大模型的应用。 然后,要确保每个点都有实际案例或技术实现方式,比如引用1提到的微调技术可以用于自适应学习系统,引用3提到的知识传播可能涉及课程开发。同时,要注意引用标识的正确添加,例如在个性化学习部分引用[^2],在内容生成引用等。 还需要检查是否符合用户的其他要求,如使用中文回答,数学公式的正确格式,独立公式用$$...$$。不过当前问题可能不涉及数学公式,所以可能不需要处理这部分。但如果有涉及,比如算法或模型结构,可能需要添加公式,但用户的问题更偏向应用场景,所以可能不需要。 最后,生成相关问题,这些问题需要围绕用户的问题扩展,比如技术实现、挑战、伦理问题、效果评估等。确保问题与教育培训相关,并且能引导用户进一步探索。 总结步骤: 1. 分点列出应用场景,每点有具体示例。 2. 每个示例结合引用资料中的信息,正确添加引用标识。 3. 生成相关问题,覆盖技术、挑战、评估等方面。 4. 检查格式是否符合要求,如中文、引用位置、结构清晰。 现在开始组织内容,确保每个应用场景清晰,并自然融入引用。</think>### AI大模型在教育培训中的应用场景示例 #### 1. **个性化学习路径生成** 通过分析学生的学习行为、知识掌握程度和兴趣偏好,大模型可动态生成**自适应学习计划**。例如,针对数学薄弱的学生,系统自动推荐强化练习题和微课视频,并调整后续课程难度。 **技术实现**: 基于学生答题数据的Fine-tuning训练,使模型能预测知识点关联性[^1]。 #### 2. **智能答疑与辅导** 大模型可充当**24/7虚拟助教**,实时解答学生问题。例如,在编程课程中,模型能解析代码错误并给出修改建议,或通过多轮对话引导推导数学公式: $$ \lim_{x \to 0} \frac{\sin x}{x} = 1 $$ 这类问题可通过模型分步骤拆解教学[^3]。 #### 3. **教学内容自动化生成** - **习题库扩充**: 根据课程标准生成海量差异化题目,例如生成不同难度层级的英语阅读理解题 *"The $E=mc^2$ theory proposed by Einstein revolutionized..."* - **课件优化**: 将教材章节自动转换为互动式动画脚本,结合AR/VR技术演示三维几何模型。 #### 4. **学习效果智能评估** 利用自然语言处理技术,大模型可批改开放式问答题并给出评分依据。例如在历史考试中,对"分析二战起因"的论述题进行论点完整性、论据相关性等多维度评价[^1]。 #### 5. **语言学习强化** 通过语音识别+大模型构建**沉浸式语言环境**,例如: - 实时纠正法语发音错误 - 生成符合CEFR等级的情景对话 *"User: Où est la gare? AI: Tournez à droite après la pharmacie, vous verrez un bâtiment bleu."*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值