一文解析大模型算法知识体系:LoRA、QLoRA、RLHF,PPO,DPO,Flash Attention及增量学习

随着大模型的飞速发展,在短短一年间就有了大幅度的技术迭代更新,从LoRA、QLoRA、AdaLoRa、ZeroQuant、Flash Attention、KTO、蒸馏技术到模型增量学习、数据处理、开源模型的理解等,几乎每天都有新的发展。

作为算法工程师,面对如此飞快的技术迭代,是否感觉到自己的学习步伐有点跟不上技术的发展?而且对这些新兴技术的理解仅仅停留在应用层面上,实际上对背后的原理没有具体剖析过?目前很多传统IT开发工程师已经在学习Agent开发和大模型微调技术,随着大模型能力的持续提升,在未来1-2年里,掌握了大模型开发+微调技术的传统IT工程师们,很大概率会替代掉一大部分传统的算法工程师

如果希望在大模型赛道上持续保持竞争壁垒,不被替代,继续在高薪的算法岗位上奋斗,那么对微调、预训练、模型部署,不同开源大模型底层的区别等各类相关技术和知识需要有很深入理解才行。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

Transformer模型是一种基于自注意力机制的神经网络模型,用于处理序列数据。它在机器翻译、文本生成、语言模型自然语言处理任务中表现出色。Transformer模型的主要特点是摒弃了循环神经网络(RNN)和卷积神经网络(CNN),采用自注意力机制来处理输入序列和输出序列之间的依赖关系。 关于PPO算法,它是近年来在深度强化学习领域中广受关注的一种算法PPO全称为Proximal Policy Optimization,是一种改进的策略梯度算法。相较于传统的策略梯度算法PPO在训练过程中加入了一些特殊的限制条件,以避免策略更新过大的问题。这些限制条件包括截断重要性采样比率和剪切近似优势函数等。PPO算法能够解决深度强化学习中的探索问题,并且在各类游戏和机器人控制等任务上都取得了不错的效果。 由于你提到了代码,我就简单介绍一下PPO算法的代码实现。PPO算法通常使用深度神经网络来表示策略函数,并使用Actor-Critic框架进行训练。代码实现中需要定义神经网络模型、损失函数、优化器等,并在每个时间步骤中计算出当前状态下的动作概率和价值函数。然后根据这些概率和价值函数计算出策略梯度和价值函数损失,并通过反向传播算法更新神经网络参数。具体实现细节可以参考深度强化学习相关的开源代码库,如OpenAI的Spinning Up。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值