大型语言模型在电力能源领域的能力与局限性

摘要

大型语言模型(LLMs)作为聊天机器人,因其在自然语言处理及广泛任务中的多功能性而备受瞩目。尽管人们对在所有领域采用这种基于基础模型的人工智能工具充满热情,但仍需探索LLMs在改善电力能源领域运营方面的能力和局限性。本文指出了在这方面富有成效的研究方向,包括用于微调LLMs的数据收集系统、将电力系统专用工具嵌入LLMs中,以及基于检索增强生成(RAG)的知识库,以提高LLMs响应的质量及其在关键安全用例中的应用。
关键词:大型语言模型、电力能源领域、能力、局限性

1 引言

自self-attention和multi-head attention机制作为transformer架构的组成部分,已经重塑了人工智能研究的格局。特别值得注意的是,它们在开发用于理解顺序数据(尤其是文本)的模型方面所起的作用。这些突破是大型语言模型(LLMs)的基石,LLMs因能够执行广泛的任务而无需为这些任务明确编程而闻名。该架构在捕捉长距离依赖关系方面的可扩展性和效率,促成了生成式预训练转换器(GPT)模型的开发。由于LLMs的多功能性,它们正迅速在多个领域找到应用,研究人员也在积极探索其在电力能源领域的潜力。

尽管研究已经展示了LLMs在生成定制代码、利用检索增强生成(RAG)能力回答技术问题、电力网络数据合成、使用深度强化学习进行上下文最优潮流解决方案等方面的潜力,但也提出了对数据所有权、隐私和安全保证的担忧。电力能源领域是现代社会的命脉。电力消费不仅是社会行为和繁荣的晴雨表,也是工业和商业部门经济活动的基础。在全球气候变化和电力需求不断增长的紧迫要求下,电力行业正面临前所未有的传感器集成量、可变可再生能源(如太阳能和风能)的广泛采用,以及氢、电动汽车和大型计算负载等新技术的融合。客户对电力供应质量和可靠性的期望也在不断演变。这一发展导致设备和相关数据量的指数级增长,给电力系统运营商和公用事业公司带来了重大挑战,他们必须在不增加相应劳动力的情况下管理这些复杂性。新知识的迅速积累和即时数据的产生超过了人类未经辅助处理的能力。这些发展正推动电力系统进入一个转型阶段,需要适应这些新技术并减轻其带来的挑战。

在这种背景下,LLMs为电力能源领域提供了有价值的支持,因为它们能够解释人类提示并缓解信息过载的能力,尤其是在管理极端天气事件和与各种不确定性来源相关的风险方面提供近实时指导。因此,通过严格的测试和分析,利用生产级LLMs(特别是GPT模型),本研究着手全面探索LLMs执行电力实际任务的能力,以检验其作为人类与电力能源系统之间接口的准备情况。此外,我们还调查了如何更好地促进LLMs在新时代的集成,考虑到其潜在的局限性。最后,我们讨论了电力能源领域的未来研究机会。

2 LLMs在填补空白方面的能力

在本节中,我们基于补充信息中提供的实验,探讨了LLMs在解决电力工程挑战方面的能力。我们的研究深入探讨了LLMs在执行各种电气工程领域特定任务(包括潮流分析、最优潮流分析、预测、图像和模式识别以及利用自定义领域特定知识库回答问题等)时的准确性。尽管我们的研究主要围绕GPT模型系列展开,但我们的大多数观察结果也适用于其他主流模型。在本节中,我们扩展了LLMs的四个关键优势(如图1所示),并详细阐述了这些优势如何转化为执行电力工程任务的关键LLMs能力。

2.1 语言模型和权重内学习

LLMs的一个基础能力是能够从文本输入(提示)生成语义上有意义的文本输出(响应)。尽管目前尚不清楚预训练数据集是什么,但基于我们的调查,当前的语言模型具有为电力工程领域特定问题提供逻辑上合理的响应的能力。这种能力的一部分可能是大量模型参数中某些信息被记忆的自然结果。然后,转换器架构中的高效处理允许高效地检索此类记忆信息。这种记忆和检索能力有时被称为权重内学习。基础LLM模型通常允许用户通过“微调”过程在新语料库信息上精炼模型。此过程允许更改LLM内的模型参数。

LLMs对电力系统具有深远影响,因为它们可以改善运营效率并支持电力部门的决策制定过程,通过促进电力系统数据、软件、工具和跨领域数据集之间的交互。利用其推理能力,LLMs可以实现实时诊断、按需分析和增强传统控制中心操作。

2.2 提示工程和上下文学习

LLMs生成响应的有效性在很大程度上受到查询或提示的结构和风格的影响,这种做法通常被称为prompts工程。提示工程可以帮助电力工程师在解决困难问题时获得更有意义的响应,而朴素的提示通常无法诱导出理想的响应。此方面最知名的一些技术是链式思维提示和检索增强生成(RAGs)。如图2(D)所示,LLMs可以筛选包含大量文本信息的文档,这对于电力系统运营等快节奏工作环境极为有用。

在提示工程研究中观察到的LLMs最令人惊讶的能力之一是基于少数示例提示的涌现上下文学习能力,如图2(A)所示。更准确地说,LLMs似乎能够从提示中推导出模式或学习规则,而无需对底层模型进行任何额外更改,并能够将从提示中学到的模式和规则应用于产生正确的响应。即使LLMs的性能可能不是同类最佳,但基于有限数据的学习能力对于电力工程师来说可能极其有用,因为电力系统数据集通常受到保护。LLM生成的响应通常是可变的,可以通过将自定义领域特定知识作为提示工程的一部分来减少这种可变性。

2.3 通过工具嵌入增强的能力

LLMs本身是复杂的语言处理单元;然而,它们的能力可以通过包含进一步的处理单元来增强。工具嵌入是此类增强功能之一,其中LLMs被训练来委派一些任务。例如,我们注意到GPT-4优先编写文本文件、执行利用嵌入工具的代码并推断生成的结果 。如图2©所示,LLMs利用其工具嵌入能力提取包含野火的区域,并将其叠加在输电线路基础设施地图上,以识别处于风险的输电线路 。

这种工具嵌入能力对电力系统工程师来说可能极其强大,因为许多应用程序需要解决非线性非凸问题。电力系统工程师使用基于物理的建模和仿真工具,如PSS/E、PSCAD、PowerWorld和CyME,这些工具可以由LLMs调用以解决复杂问题。这种工具嵌入能力可以通过API调用得到促进。工具嵌入还促进了对典型时空时间序列电力系统数据(如SCADA数据)的按需远程处理 。

2.4 增强的多模态能力

很多时候,电力工程师需要处理非文本和非数值数据 ,如时间序列测量、图像或视频。基础LLMs可以与其他模型结合以获得多模态处理能力,使其能够上下文化以各种非文本格式呈现的信息。这些能力主要由类似于自然语言处理中常用的嵌入来促进。因此,大型语言模型(LLMs)在多模态数据方面表现出稳健的性能。值得注意的是,计算机科学领域的最新文献正专注于增强LLMs具有多模态输入和输出的能力。我们预计,在不久的将来,多模态能力将成为大多数现成LLMs的固有部分,而下一代应用程序将确实利用这些能力。在我们的实验中,LLMs展示了在解释图像数据方面的熟练程度。在这方面,如图2(A)所示,LLMs利用其多模态能力和适当的提示选择,从捕获的图像中检测绝缘子缺陷 。

3 LLMs在电力能源领域应用的局限性

3.1 领域特定数据可用性和处理的挑战

在电力部门应用大型语言模型(LLMs)的一个重大挑战是LLMs预训练中领域特定数据的稀缺性。由于隐私关注和法规限制,LLMs的预训练只能依赖公开可用的和获得许可的第三方数据集。因此,研究界面临的一个开放问题是如何构建大型电力系统领域特定训练数据集以克服《美国联邦电力法》第215A(d)条规定的关键能源/电力基础设施信息(CEII)。受这一现实约束,可以使用较小的、经过精心策划的高质量(带标签)数据集进行微调;例如,这可以帮助用户执行潮流分析,甚至防止LLMs生成不安全的响应。根据使用场景,这些微调数据集可能需要处理以防止隐私泄露,并转换成对下游任务进行微调最有效的格式。LLMs的上下文少量学习能力,包括将有限的高质量数据作为提示的一部分,可能有助于提高性能,一些研究人员已经在探索这种可能性。

此外,很大一部分电力系统数据来自各种测量仪器的长范围时间序列数据集,这些数据可能不是自然语言。这可能需要为更高效的嵌入算法设计定制方案。此外,LLMs每次查询只能处理有限量的信息,这也称为上下文窗口,而电力系统信号可能表现出长范围依赖性,这可能无法被捕获。

3.2 缺乏安全护栏

电力系统中的安全包括广泛的范围,涵盖设备安全、人员安全、最终用户安全和电力能源系统的安全运行。集成到电力系统中的LLMs必须遵守这些安全标准。首先,由于生成模型的本质,从LLMs获得的结果是概率性的,因此响应的正确性可能无法完全保证。其次,LLMs通常不提供其输出的不确定性估计。电力系统操作必须符合非常严格的安全性能指南,如电压幅值限制。这些电力系统操作要求不容易由LLMs满足。在我们的实验中,我们观察到,随着提示的细微变化,LLMs生成了不同的响应和代码,这可能导致错误的结果。我们还发现,LLMs可以被欺骗以提供不安全的响应(参见补充信息SI.8)。缺乏定制的安全护栏也可能阻止我们执行电力能源系统中必要的一些任务。例如,在我们的实验中,我们无法仅基于视觉输入预测野火传播或进行审计。此外,由于LLMs是基于大量语料库数据训练的,我们需要确保少数群体的声音不被压制。领域专家在提供实时指导和标记有问题的内容以训练LLMs方面发挥着主要作用。

因此,尽管LLMs可以极大地惠及电力行业,但它们也带来了与传统软件系统不同的独特风险。因此,需要建立治理框架以减轻其独特风险。例如,美国国家标准与技术研究院(NIST)的人工智能风险管理框架为基于负责任AI的普遍原则提供了自愿性指南。创建一个安全的基于LLMs的系统是一个关键研究领域,特别是在电力等关键基础设施系统中。

3.3 不适应处理物理原理

能源生产和消费是一个复杂的过程,受一组物理原理的支配,如麦克斯韦方程、机器动力学以及人类行为。使用LLMs对人类行为进行建模,特别是在价格预测和需求响应政策设计等任务中,提出了巨大的挑战,可能是因为价格是负荷、人类决策和市场规则的复杂结果。使用更多数据可能会提高可再生能源发电预测、价格预测( 以及对人类行为的理解,从而有利于电网运行。尽管正在努力将多个专门寻求注意力的转换器用于决策制定,这些转换器也可用于潮流分析 ,但用于控制过程的LLMs高度专业化。基础LLMs通常由于缺乏可解释性而存在黑箱性质。在可能出现意外情况的电力系统中,它们也可能存在问题。因此,LLM可解释性将是构建可解释和透明系统的关键组成部分。这也使我们相信,现有的为电力工程师量身定制的物理驱动、复杂、专用工具仍然必不可少。通用LLMs可以作为有价值的助手,总结和发现决策制定的含义,并通过工具嵌入协助电力工程师,而不必深入研究复杂过程。

3.4 可能面临网络安全和隐私威胁

在将大型语言模型(LLMs)集成到电力能源系统中时,网络安全和隐私成为至关重要的关注点。即使在本地LLM设置中,也存在潜在的网络漏洞。例如,使用与电力系统相关的公司特定数据构建LLM可能会无意中使组织面临特权提升攻击、后门利用以及敏感训练数据泄露的风险。用于关键安全任务的在线LLMs 将成为网络攻击的频繁目标。此外,专门设计的提示可能被视为商业秘密,恶意行为者可能会泄露 。

随着LLMs越来越深入地集成到电力系统中,对数据安全性的担忧尤为突出,建立标准协议以确保数据在用于训练之前得到充分匿名化和清理以移除个人身份信息变得势在必行。然而,在个人信息或群体信息与上下文相关的情况下,挑战依然存在。

4 未来前景

LLMs,如GPT模型,已显示出通过自然语言输入解释电力工程任务的巨大潜力。通过本研究,我们测试了LLMs在电力能源领域应用的能力和局限性。我们讨论了LLMs在回答一般电力系统查询、代码生成和数据分析方面的有效性。此外,通过检索增强生成,LLMs可以作为文档知识库,并帮助执行诸如操作员培训等任务。最后,LLMs的多模态能力在诊断设备故障和远程监控方面可能很有用。总的来说,通用LLMs在检测对象(文本、图像、数据)之间的相关性方面表现出强大能力,但它们仍然缺乏解决高度依赖于物理原理的问题的能力,这些问题通常涉及复杂的数学原理。

有多个可能性可以扩展和增强LLMs在电力系统研究和应用中的能力。第一个方向是为微调基础LLMs收集定制数据。这将需要强大的电力系统专业知识来识别最有效的数据源并设计收集机制,以确保高质量数据集的可用性。LLMs结果的不确定性量化也是电力部门研究的一个重要方向。第二个方向是允许嵌入电力系统专用工具。电力系统已经拥有强大且多样的各种功能工具,LLMs可以作为连接这些工具的中心点,通过高质量嵌入。朴素的嵌入可能会降低效率,并可能导致不同工具之间的冲突;因此,电力系统专业知识可能对于识别此类工具嵌入的所需行为至关重要。第三个方向是构建电力系统知识库以进行检索增强。尽管已经有生成此类知识库的通用方法,但它们可能无法充分利用物理约束和电力系统特性;因此,这项工作可能需要深入理解电力系统的运行和能力。基于基础模型的人工智能工具作为电力能源部门决策支持的副驾驶的未来是光明的。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值