大型语言模型在电力系统中的应用:增强控制与决策能力

摘要

本文探讨了大型语言模型(LLMs)在电力系统中的应用,重点关注其革新控制、优化和决策制定过程的潜力。我们对当前的研究和应用进行了全面回顾,并指出了这一新兴领域的挑战和机遇。文章提供了一个实际案例,展示了使用Python实现LLM代理以控制电力系统的过程。电力系统模型基于Pandapower构建,而LLM代理则基于Llama 3,通过Ollama执行。我们的研究结果表明,LLMs能够显著提升电力系统运行的效率和可靠性,为构建更智能和自适应的能源管理系统铺平道路。

关键词:电力系统,大型语言模型,控制

1. 引言

近年来,将人工智能(AI)和机器学习(ML)技术集成到电力系统中受到了广泛关注[1]-[2]。随着电网变得更加复杂和动态,传统的控制和管理方法难以处理海量数据和快速变化的条件。大型语言模型(LLMs),作为AI的一个子集,以其卓越的自然语言处理和一般问题解决能力而闻名,为解决这些挑战提供了有前景的解决方案[3]。

LLMs,如生成式预训练转换器(GPT)模型,已经展示了理解和生成类似人类文本、执行复杂推理任务甚至编写代码的能力。这些能力使它们成为电力系统应用的潜在有价值工具,在这些应用中,它们可以协助从故障诊断和预测性维护到电网实时控制和优化等一系列任务。

本文探讨了LLMs在电力系统中的当前研究状态和应用,并展示了如何实施一个用于电力系统控制的LLM代理的实际案例。我们首先提供关于电力系统和LLMs的综合背景,随后回顾这两个领域交叉点的现有文献。然后,我们介绍了使用Llama 3(一种最先进的语言模型)实现LLM代理的方法,并将其与Pandapower(一种广泛使用的开源电力系统建模和分析工具)开发的电力系统模型相集成。我们的实际案例说明了如何使用LLM代理来监控系统条件、做出决策并控制电力系统的各个方面。我们讨论了实施过程中遇到的挑战、LLM代理的性能以及对未来电力系统运行的可能影响。

我们的目标是为AI驱动的电力系统领域的知识库做出贡献,并通过弥合理论研究和实际应用之间的差距来激发该领域的进一步研究和开发。将LLMs集成到电力系统中可以增强电网韧性、提高能源效率并支持向更可持续和智能的能源基础设施过渡。

1.1 电力系统

电力系统是复杂的网络,旨在生成、传输和分配电能以供消费者使用。这些系统由各种组件组成,包括发电厂、变压器、输电线路、变电站和配电网络。电力系统的主要目标是确保电力供应的可靠性和效率,同时保持系统稳定性和电能质量。电力系统的关键方面包括发电、输电和配电。系统的每个部分都包括控制和保护机制、负荷管理以及平衡电力供需的技术,如需求响应和负荷预测。这些措施有助于电网稳定,确保系统在各种运行条件和扰动下保持稳定。近年来,由于可再生能源的整合、分布式发电、电动汽车以及对更高能源效率的需求等因素,电力系统的复杂性显著增加。这些挑战导致了对应用高级计算技术(包括AI和ML)以改进电力系统管理和控制的日益增长的兴趣。

1.2 大型语言模型

大型语言模型是一类人工智能模型,旨在理解、生成和操作人类语言[4]。这些模型通常基于深度学习架构,特别是转换器模型,并在大量文本数据上进行训练。LLMs的关键特征包括:

• 规模:LLMs通常有数十亿个参数,使它们能够捕获语言中的复杂模式和关系;

• 自注意力机制:这使模型在处理语言时能够评估输入不同部分的重要性;

• 迁移学习:LLMs可以在一般语言数据上进行预训练后,针对特定任务进行微调;

• 少样本学习:用极少量的特定任务训练示例执行新任务的能力;

• 多任务能力:LLMs能够执行广泛的与语言相关的任务,包括翻译、摘要和问答。

LLMs的显著例子包括OpenAI的GPT(生成式预训练转换器)系列、Google的BERT(基于转换器的双向编码器表示)以及最近由Meta AI开发的开源模型如Llama。LLMs的能力超出了简单的语言处理。它们已经展示了在推理、问题解决甚至代码生成任务中的熟练程度。这种多功能性使它们成为复杂领域(如电力系统)中潜在的有力工具,在这些领域中,它们可以协助解释数据、做出决策甚至生成控制策略。

2. 大型语言模型在电力系统中的当前应用与研究

LLMs在电力系统中的应用是一个新兴领域,正引起学术界和工业界的浓厚兴趣[5]。虽然传统机器学习技术已广泛用于电力系统的任务(如负荷预测和故障检测),但LLMs由于其处理和生成类似人类文本、理解上下文和执行复杂推理的能力而提供了新的可能性。电力系统的各种过程可以由LLMs驱动[6]-[7],开辟了显著的研究和工程机会。LLMs在电力系统中的当前应用和研究领域包括异常检测和故障诊断、预测性维护、知识管理、决策支持等。电力系统产生大量的技术文档、标准和操作程序。LLMs可用于创建智能知识管理系统,以高效检索相关信息、回答技术问题并为操作员和工程师提供决策支持。LLMs可协助生成和分析电网规划和扩展的各种情景。通过考虑负载增长、可再生能源整合和监管变化等多个因素,LLMs可帮助规划人员探索不同选项及其潜在影响。随着电力系统日益数字化,网络安全也成为日益关注的问题。LLMs可用于分析网络流量模式、日志文件和威胁情报报告,以识别潜在的安全威胁并提出缓解策略。可再生能源的间歇性对电网稳定性构成挑战。LLMs可用于处理各种数据源(包括天气预报、历史发电模式和电网条件),以优化可再生能源的电网整合。LLMs可协助解释和应用复杂的监管要求。它们可以在监管文档和标准上进行训练,以帮助确保电力系统操作符合不断演变的法规。AI还显示出在容量优化、电网映射、资产管理和预测性维护等领域的巨大潜力。

尽管LLMs在电力系统中的应用前景广阔,但在未来应用中仍需解决几个挑战:

• 数据隐私和安全:电力系统数据通常很敏感,因此使用LLMs时必须确保数据隐私和安全得到保护。

• 可解释性和透明性:LLMs的决策制定过程可能是不透明的,这在关键基础设施(如需要决策可解释和可审计的电力系统)中可能存在问题。

• 实时性能:许多电力系统应用需要实时或近实时响应。大型LLMs的计算要求可能对此类应用构成挑战。

• 与现有系统的集成:将LLMs集成到电力系统中需要与现有的监控与数据采集(SCADA)系统、能源管理系统和其他控制基础设施进行仔细集成。

随着该领域研究的进展,我们有望看到LLMs在电力系统中的更复杂应用,这可能导致更智能、高效和灵活的电网运行。

3. 方法论

我们实现用于电力系统控制的LLM代理的方法论涉及几个关键步骤,如下所述。

3.1 电力系统建模

我们使用Pandapower[8],一个用于电力系统建模和分析的开源Python库。Pandapower能够创建包括发电机、负载、输电线路和变压器在内的现实电力系统模型。该模型易于操作和分析,为测试我们的LLM代理提供了理想环境。

3.2 LLM选择和实现

在这项工作中,我们使用了Llama 3模型,这是Meta AI开发的最先进的语言模型[9]。Llama 3在性能和效率之间提供了出色的平衡,使其非常适合我们的电力系统控制应用。为了在本地PC上运行所选模型,我们使用Ollama[10],一个用于在本地运行Llama模型的开源工具,它提供了对模型部署的灵活性和控制。Ollama是一个平台,旨在简化大型语言模型(LLMs)的本地运行和部署过程。它使用户能够下载并在本地机器上运行各种开源LLM模型,为与AI模型的交互提供了更灵活和安全的环境。它主要侧重于使AI模型能够直接在个人或企业系统上使用,而无需持续的云连接。Ollama的关键功能包括:

• 本地模型执行:Ollama的一个功能是能够在用户设备上本地运行AI模型。

• 多模型支持:Ollama支持各种类型的大型语言模型(LLMs),可以处理文本生成、摘要等任务。其灵活的架构使用户能够轻松集成和切换不同的模型。

• 成本效益:与基于云或商业解决方案相比,在本地运行LLM模型可以显著节省成本,这些解决方案通常涉及昂贵的计算和存储费用。

• 离线能力:对于互联网连接无法保证的应用(如在偏远地区或高安全环境中,大型发电厂通常就是这样),Ollama的离线运行AI模型的能力非常有价值。

• 隐私和安全:随着对数据隐私的担忧日益增加,许多组织对使用基于云的AI服务犹豫不决,因为这可能存在暴露敏感信息的风险。Ollama通过将所有数据和模型交互保持在本地来解决这个问题,确保没有数据发送到云端。

3.3 代理设计

我们的LLM代理设计用于执行以下任务:

• 通过解释Pandapower仿真输出来监控系统条件;

• 根据预定义标准和学习模式做出决策;

• 生成控制操作以维持系统稳定性和效率;

• 以自然语言向操作员提供建议的解释。

3.4 集成

我们开发了一个Python脚本,该脚本将Pandapower模型与Llama 3代理和Ollama接口集成在一起。该脚本处理电力系统仿真与LLM之间的信息流以及控制操作的执行。所有模块都是Python生态系统的一部分,并在单个脚本内运行。Python模块使用Anaconda在conda管理的环境中安装[11]。唯一的要求是Ollama服务器已安装并在本地IP地址上运行[10]。

4. 实际案例1:用于电力系统分析和控制的LLM代理

将LLMs与电力系统控制相集成的实验正在进行中[12]。研究人员正在研究涉及基于LLM的控制和监视逻辑的电力系统仿真案例。我们的工作侧重于优化电力系统操作,如[13]所述。本节提供了一个使用Python实现用于电力系统控制的LLM代理的实际案例。我们将这分解为三个主要部分:使用Pandapower进行电力系统建模、使用Llama 3和Ollama实现LLM代理以及这些组件的集成。

4.1 使用Pandapower进行电力系统建模

我们选择了400/110 kV电力系统网络的复杂配置作为实际案例,用单线图表示(见图1)。使用Pandapower,该网络被建模为包含大容量可控光伏(PV)发电厂和几个节点处添加的电池储能系统,以增加复杂性。

图2展示了使用Pandapower实现的400/110 kV电力系统,其中增加了PV发电厂和电池储能系统。该网络设计具有额外的PV发电厂和电池储能系统,以便能够注入有功和无功功率。电力系统变压器配备有分接开关,用于本地电压调节。负载也位于总线上,并用无功和有功分量进行参数化。电力系统的初始条件被故意设置为具有大过电压,作为LLM代理的输入状态,LLM代理的任务是稳定电压和整个电力系统。最初有8-9个总线的电压超出1.00-1.05标幺值(p.u.)的期望范围,这是一个通过分接开关的一组同步操作和PV发电厂逆变器和电池储能系统的有功和无功注入来稳定的复杂任务,这是LLM模型的任务。

4.2 LLM代理实现

在单线图中显示的400/110 kV电力系统网络模型(见图1)在Pandapower中创建,以便进一步集成到整个Python生态系统中。基于Llama 3开源LLM模型的AI代理通过Ollama平台实现,以分析和控制电力网络。基于Llama 3的LLM代理通过控制分接开关和注入有功和无功功率,旨在稳定网络并降低过电压。

4.2.1 模型设计假设

在文献[14]-[16]中,变压器分接开关操作和从PV发电厂逆变器和电池储能系统注入有功和无功功率已被证明可以将电压稳定在期望的运行范围内。这些是指导设计Llama 3 LLM代理的物理和工程假设。代理旨在通过一组同步操作(包括操作变压器分接开关和从PV发电厂逆变器注入有功和无功功率)来稳定母线电压。

4.2.2 提示设计

尽管Llama 3在大量文本语料库上进行了预训练,但它不具备关于电压稳定的具体知识。在这个初始模型中,我们通过详细的提示提供上下文,而没有对电力系统操作数据、技术文档或示例场景进行微调或使用检索增强生成(RAG)(见图3)。这个特定提示作为LLM的输入,帮助模型理解电力系统的具体上下文和术语。

4.2.3 模型执行

具有过电压的400/110 kV输电和配电网络通过Pandapower进行仿真,并加载到Python环境中,其中通过Ollama服务器运行Llama 3模型。最初,系统中有九个总线的电压超出1.00-1.05标幺值(p.u.)的期望范围。

使用NetworkX[17] Python库创建了可视化,其中节点代表总线,过电压节点以红色突出显示(见图4)。Llama 3代理在模型的五个步骤中优化Pandapower 400/110 kV网络参数。在每个步骤之后,将更新后的网络状态加载到LLM提示中进行处理,修改网络参数,并重新计算功率流以评估整体网络稳定性。经过五个步骤的执行后,网络状态令人满意,仅剩下一对过电压,这可以通过对较低电压级别的操作进一步解决[16]。

从图4和图5可以明显看出,随着Llama 3基LLM代理的每一组动作设置,电力系统的电压分布稳定在1.00-1.05标幺值(p.u.)的期望范围内。在变压器分接开关的五组动作和从PV发电厂及电池储能系统注入有功和无功功率后,观察到的网络的效率和稳定性显著提高,同时LLM输出还生成了有价值的评论和建议。

4.2.4 结果分析

对于20次模型执行,我们获得了结果分布,如图6所示。超过70%的执行产生了非常好的结果,在五个步骤的模型执行后有0-2个过电压。考虑到仅对LLM模型使用了提示上下文,而没有进行微调或使用检索增强生成(RAG)机制,对于Llama 3开源模型来说,这些结果是令人满意的。

5. 结论与未来工作

本研究展示了大型语言模型在增强电力系统控制和决策制定过程中的潜力。LLM代理在分析复杂系统状态、提供情境感知建议和生成多步控制策略方面展示了卓越的能力。

将自然语言处理与电力系统控制相结合为控制室中的直观人机界面、自动化报告生成和电力公用事业中的知识管理开辟了新的可能性。LLMs从各种来源处理和合成信息的能力在管理现代电网日益复杂且数据丰富的环境中可能具有不可估量的价值。

然而,本研究中确定的挑战,特别是与数值精度、实时性能和可解释性相关的挑战,突出了需要进一步研究和开发的需求。未来的工作应重点关注:

1. 开发结合LLMs与传统优化和控制算法优点的混合系统;

2. 调查使用强化学习技术使LLM代理能够基于系统结果随时间改进其决策制定;

3. 开发检索增强生成(RAG)机制以提高模型准确性;

4. 开发多代理系统以实现有效协作,实现共同目标;

5. 探索LLMs在电力系统运行其他领域的应用,如长期规划、可再生能源整合和网络安全;

6. 解决基于LLM的决策制定系统的可解释性和透明性,这对于它们在关键基础设施中的采用至关重要;

7. 调查能够处理不仅文本数据而且视觉和时间序列数据的多模态LLMs的潜力,这些数据在电力系统监控中很常见。

特别关注与LLMs在电力系统中应用相关的安全问题[18]。

总之,尽管存在需要克服的挑战,但大型语言模型在电力系统中的应用代表了能源部门正在进行数字化转型中一个充满希望的前沿领域[19]。随着这些技术的不断发展,它们有可能在未来智能、高效和灵活的电网建设中发挥重要作用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值