大模型Agent智能体的不同三种类型及应用建议

img

智能体主要由大语言模型(LLM)+ 提示词(Prompt)+知识库(RAG)+工作流(WorkFlow)+工具(Tools)等若干元素组成。

img

与智能体的组成不同,所谓的智能体表现模式,就是智能体呈现给大家的样子或者交互方式。智能体开发平台Dify里面,将智能体的类型分成了5种,但是我觉得这种分法很容易让初学者产生误解。

img

上图种的Agent竟然是应用类型,Agent不是智能体的英文名称吗?下图种工作流的节点也叫Agent??

img

Dify的插件分类中也有Agent?另外Dify中的工具和插件的区别是什么?

img

所以说,Dify产品虽然非常优秀,但是在我这种喜欢扣字眼的产品经理眼里,Dify对产品的功能组件的定义显得太过随意,大部分人只是时间长了,用习惯了,自然而然的接受了,但是对于初学智能体开发的人来说,理解这些功能将会非常痛苦。

经过对各种智能体的分析总结,智能体其实主要分为这么三类,下面给大家详细介绍一下。

img

(1)聊天助手类型

这种是最常见的智能体形态,腾讯混元、通义千问、DeepSeek 的网页聊天窗口其实就是智能体,也是普通用户使用大模型使用的入口,越来越多的功能挂载到这个入口,这个网页聊天窗口已经从最简单的聊天对话助手,变成了一个整合多模态能力的超级智能体。

img

聊天助手类型的主要有以下特点:

img

在Dify种,聊天助手类型的智能体,开发界面一般是这样的,如果这个智能体需要在对话时调用外部工具,则只需将工具添加进来就可以了。

img

(2)工作流类型

工作流类型的智能体更加复杂和强大,它允许用户设计一系列预定义的步骤,让智能体按照这些步骤自动执行任务。

img

工作流型Agent具备执行复杂任务的能力,通过集成外部工具、API和数据库实现更强大的功能。它们能够按照预设流程完成一系列操作,如自动化数据分析、文档处理或信息搜集。

img

工作流的本质是一个流程图或者说决策树。

img

在Dify中,工作流类型的智能体开发及效果通常是这样:

img

(3)对话流类型

对话流类型融合了聊天助手和工作流的特点,它通过预设的对话路径和决策树,引导用户完成特定目标。对话流l类型智能体是最高级的智能体形态,它结合了聊天助手的自然交互和工作流的任务执行能力。这类智能体能在对话中理解用户需求,动态规划并执行任务序列,同时保持上下文一致性。

img

代表性产品如Siri、Google Assistant等多轮对话系统,它们能够处理复杂意图解析,并通过多轮交互完成渐进式任务,为用户提供沉浸式智能体验。

img

在Dify中,对话流类型的智能体界面通常是这样:

img

img

智能体类型选择

不同类型的智能体各有特点,根据应用场景选择合适的类型可以提升效率和用户体验。以下是三种主要智能体类型及其应用建议。

img

以上就是智能体三种类型的主要内容,下节课我们将重点将围绕每种类型,讲解智能体的组成元素以及制作步骤。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

### 大型模型代理智能体概述 大型模型代理智能体是指基于复杂算法结构构建的高度智能化实体,在特定环境中能够自主执行任务并作出决策。这些智能体通常依赖于大规模数据集训练而成的大规模预训练模型,具备强大的泛化能力适应能力。 #### 设计目标与特性 为了使单一理性的代理能够在多种多样的环境中取得成功,学习机制允许设计者创建这样的代理,使其行为随着获得的经验增加而逐渐摆脱对初始先验知识的依赖[^3]。这意味着通过不断积累实际操作中的反馈信息,即使是在未曾预料到的新情境下,该类智能体也能够展现出良好的性能表现。 #### 技术实现路径 这类高级别的代理系统往往追求一些工具性收敛驱动因素,这几乎适用于任何价值体系下的先进代理;因此它们与其他不具备此类特性的系统存在本质区别[^1]。具体来说: - **感知理解**:利用先进的自然语言处理技术计算机视觉技术来解析输入的数据流; - **推理规划**:借助强化学习框架优化长期策略选择过程; - **交互协作**:开发高效的通信协议支持跨平台间的无缝对接以及人机共融工作模式。 ```python class LargeModelAgent: def __init__(self, environment): self.environment = environment def perceive(self, data_stream): # 使用NLP/CV技术分析传入的数据流 pass def reason_and_plan(self, state): # 应用RL方法制定最优行动方案 pass def interact(self, other_agents_or_humans): # 实现高效沟通接口促进合作交流 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值