本地部署Qwen2.5 Coder模型:自建API调用接口的详细步骤与技巧!

Qwen 2.5 Coder模型部署与应用

1. Qwen 2.5 Coder:你的AI编程闺蜜

各位码农们,准备好迎接你的新编程伙伴了吗?Qwen 2.5 Coder来了!这个由阿里巴巴达摩院精心打造的AI编程助手,不仅能帮你生成代码,还能查漏补缺、推理如流。它就像是你的编程闺蜜,懂你、懂代码,还不会嫌弃你的咖啡口气。
Qwen 2.5 Coder

1.1 Qwen 2.5 Coder的超能力
  1. 多语言支持: Qwen 2.5 Coder支持40多种编程语言。无论你是Python狂热粉,还是JavaScript痴迷者,它都能陪你玩得飞起。
    图片a

  2. 代码生成: 只需给它一个简单的提示,它就能为你生成完整的函数、类,甚至是整个程序。就像是给了魔法师一根魔杖,然后 - 嘣!代码就出来了。

  3. 代码补全: 写到一半卡壳了?别担心,Qwen 2.5 Coder会接着你的思路往下写。它就像是能读懂你心思的编程通灵师。

  4. 代码修复: 发现bug了但不知道怎么修?Qwen 2.5 Coder可以帮你诊断问题并提供修复方案。它就是你的私人代码医生。
    图片b

  5. 代码解释: 看不懂别人的代码?让Qwen 2.5 Coder为你解释。它就像是代码世界的翻译官,能把晦涩难懂的代码翻译成人话。
    图片c

1.2 为什么选择Qwen 2.5 Coder?
  1. 性能卓越: 在多个代码生成基准测试中,Qwen 2.5 Coder的表现可以用"秒杀"来形容。它不仅能写代码,还能写得又快又好。
    对比a

  2. 持续学习: Qwen 2.5 Coder不断学习最新的编程技术和最佳实践。用它就像每天都有一个最新版的编程百科全书。

  3. 开源免费: 是的,你没看错。这么厉害的AI助手,竟然是开源免费的。这大概是程序员界最好的免费午餐了。

好了,介绍完Qwen 2.5 Coder的超能力,我们该开始正式的部署之旅了。系好安全带,准备好你的键盘和咖啡,让我们开始部署吧。

2. 准备工作:给Qwen 2.5 Coder安个温馨小窝

在我们在部署过程之前,让我们先为Qwen 2.5 Coder准备一个舒适的环境。

2.1 硬件要求:不是所有的电脑都能驾驭这位大神
  • GPU: NVIDIA A100 40GB或更高。是的,Qwen喜欢豪华的"大床"。如果你只有一张普通的游戏显卡,可能会让Qwen睡得不太舒服。
  • CPU: 至少4核。Qwen不是很挑剔,但如果你给她一个双核处理器,她可能会觉得有点"喘不上气"。
  • 内存: 最少8GB,推荐16GB或更高。因为Qwen喜欢在内存里跳舞,给她足够的空间让她尽情舞动吧。

感谢Rainyun提供服务器支持
国内4H8G服务器低至45¥/月
Rainyun已有超过五年运营经验,超过30,000个网站在Rainyun运行KVM高配

2.2 软件环境:Qwen的口味有点挑
  • 操作系统: Ubuntu 20.04 LTS或更高版本。Windows用户别慌,虚拟机欢迎你。或者,你可以考虑给电脑装个双系统,让Qwen住在Ubuntu里。
  • Python: 3.8或更高版本。因为Qwen觉得3.7太"老气横秋"了。
  • CUDA: 11.3或更高版本。没错,就是那个让你的显卡燃起来的东西。
  • cuDNN: 与CUDA版本匹配的版本。就像袜子要配鞋子一样重要。
2.3 环境配置:给Qwen铺张温暖的小床

首先,让我们更新一下系统,就像给Qwen打扫房间一样:

 sudo apt update && sudo apt upgrade -ysudo apt update && sudo apt upgrade -y


接下来,安装必要的系统依赖,就像给Qwen准备生活必需品:

 sudo apt install -y build-essential cmake unzip pkg-configsudo apt install -y build-essential cmake unzip pkg-config
sudo apt install -y libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt install -y libxvidcore-dev libx264-dev
sudo apt install -y libopenblas-dev libatlas-base-dev liblapack-dev gfortran
sudo apt install -y libhdf5-serial-dev
sudo apt install -y python3-dev python3-pip python3-venv


现在,让我们为Qwen创建一个舒适的小窝(虚拟环境):

 python3 -m venv qwen_envpython3 -m venv qwen_env
source qwen_env/bin/activate


安装PyTorch,就像给Qwen准备一张舒适的大床:

 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113


最后,安装其他必要的Python库,就像给Qwen的房间添加家具:

 pip install transformers modelscope flask requests numpy scipypip install transformers modelscope flask requests numpy scipy


验证一下是否安装成功,就像检查Qwen是否睡得舒服:

 python -c "import torch; print(torch.cuda.is_available())"python -c "import torch; print(torch.cuda.is_available())"


如果输出为True,恭喜你!Qwen已经躺在舒适的小床上,准备大展身手了。

在这里插入图片描述

3. 迎接Qwen 2.5 Coder:把AI大神请回家

3.1 从Hugging Face接Qwen回家

首先,安装git-lfs,就像准备一辆豪华轿车去接Qwen:

 sudo apt-get install git-lfssudo apt-get install git-lfs


然后,克隆模型仓库,就像把Qwen接到你家门口:

 git lfs installgit lfs install
git clone https://huggingface.co/Qwen/Qwen2.5-Coder-7B


最后,在Python中加载模型,就像邀请Qwen进入你的代码世界:

 from transformers import AutoTokenizer, AutoModelForCausalLMfrom transformers import AutoTokenizer, AutoModelForCausalLM

model_path = "./Qwen2.5-Coder-7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda")


3.2 从ModelScope接Qwen回家

如果你更喜欢ModelScope,那就这样做:

 pip install modelscopepip install modelscope


然后在Python中加载模型:

 from modelscope.models import Modelfrom modelscope.models import Model

model = Model.from_pretrained("Qwen/Qwen2.5-Coder-7B", device_map="auto")


4. 让Qwen为你服务:搭建本地API

4.1 创建Flask应用:给Qwen一个舞台

首先,创建一个项目目录,就像给Qwen准备一个专属办公室:

 mkdir qwen_apimkdir qwen_api
cd qwen_api


然后,创建app.py文件,这就是Qwen的剧本:

 touch app.pytouch app.py


现在,用你最喜欢的文本编辑器(vim还是nano?别争了,选你顺手的就行)编辑app.py文件,添加以下内容:

 import osimport os
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# 设置环境变量以使用GPU,就像给Qwen配了一台超级计算机
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# 初始化Flask应用,就像给Qwen一个麦克风
app = Flask(__name__)

# 加载模型和tokenizer,就像给Qwen装备武器
model_path = "./Qwen2.5-Coder-7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda")

# 设置API密钥,就像给Qwen一个保镖
API_KEY = os.environ.get("QWEN_API_KEY", "your_default_api_key")

def require_api_key(view_function):
    def decorated_function(*args, **kwargs):
        if request.headers.get('X-API-Key') and request.headers.get('X-API-Key') == API_KEY:
            return view_function(*args, **kwargs)
        else:
            return jsonify({"error": "无效的API密钥"}), 401
    return decorated_function

@app.route("/generate_code", methods=["POST"])
@require_api_key
def generate_code():
    data = request.json
    prompt = data.get("prompt", "")
    
    # 设置生成参数,就像调整Qwen的魔法咒语
    max_length = data.get("max_length", 150)
    temperature = data.get("temperature", 0.7)
    top_p = data.get("top_p", 0.9)
    
    # 生成代码,就像让Qwen施展魔法
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    with torch.no_grad():
        outputs = model.generate(
            inputs["input_ids"],
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            num_return_sequences=1
        )
    
    generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return jsonify({"generated_code": generated_code})

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000)


4.2 配置和启动API服务:让Qwen开始表演

首先,设置API密钥环境变量,就像给Qwen一个秘密暗号:

 export QWEN_API_KEY=your_secure_api_keyexport QWEN_API_KEY=your_secure_api_key


然后,启动Flask应用,让Qwen开始她的表演:

 python app.pypython app.py


最后,验证服务是否正常运行,就像给Qwen一个彩排的机会:

 curl -X POST http://localhost:5000/generate_code \curl -X POST http://localhost:5000/generate_code \
     -H "Content-Type: application/json" \
     -H "X-API-Key: your_secure_api_key" \
     -d '{"prompt": "def calculate_fibonacci(n):", "max_length": 200, "temperature": 0.8}'


5. 把Qwen搬上网络舞台:Web界面集成

现在Qwen已经在你的本地电脑上安家落户了,是时候让她在更大的舞台上展示才华了。我们来把Qwen集成到一个漂亮的Web界面中,让她可以和全世界的程序员交朋友!

5.1 准备前端项目

首先,我们需要创建一个新的前端项目。我们将使用React来构建我们的Web界面,因为React是目前最流行的前端框架之一,而且Qwen也很喜欢它。

  1. 创建一个新的React项目:
 npx create-react-app qwen-web-uinpx create-react-app qwen-web-ui
cd qwen-web-ui


  1. 安装必要的依赖:
 npm install axios @material-ui/core @material-ui/iconsnpm install axios @material-ui/core @material-ui/icons


5.2 创建主界面

现在,让我们为Qwen创建一个漂亮的主界面。编辑src/App.js文件:

 import React, { useState } from 'react';import React, { useState } from 'react';
import { 
  Container, 
  TextField, 
  Button, 
  Typography, 
  Paper, 
  Box 
} from '@material-ui/core';
import { Code } from '@material-ui/icons';
import axios from 'axios';

function App() {
  const [prompt, setPrompt] = useState('');
  const [generatedCode, setGeneratedCode] = useState('');
  const [isLoading, setIsLoading] = useState(false);

  const handleSubmit = async (e) => {
    e.preventDefault();
    setIsLoading(true);
    try {
      const response = await axios.post('http://localhost:5000/generate_code', {
        prompt: prompt
      }, {
        headers: {
          'Content-Type': 'application/json',
          'X-API-Key': 'your_secure_api_key'
        }
      });
      setGeneratedCode(response.data.generated_code);
    } catch (error) {
      console.error('Error:', error);
      setGeneratedCode('Oops! Something went wrong. Please try again.');
    }
    setIsLoading(false);
  };

  return (
    <Container maxWidth="md">
      <Box my={4}>
        <Typography variant="h4" component="h1" gutterBottom>
          Qwen 2.5 Coder Web UI
        </Typography>
        <Paper elevation={3}>
          <Box p={3}>
            <form onSubmit={handleSubmit}>
              <TextField
                fullWidth
                label="Enter your prompt"
                variant="outlined"
                value={prompt}
                onChange={(e) => setPrompt(e.target.value)}
                margin="normal"
              />
              <Button
                type="submit"
                variant="contained"
                color="primary"
                startIcon={<Code />}
                disabled={isLoading}
              >
                {isLoading ? 'Generating...' : 'Generate Code'}
              </Button>
            </form>
            {generatedCode && (
              <Box mt={3}>
                <Typography variant="h6">Generated Code:</Typography>
                <Paper elevation={1}>
                  <Box p={2}>
                    <pre>{generatedCode}</pre>
                  </Box>
                </Paper>
              </Box>
            )}
          </Box>
        </Paper>
      </Box>
    </Container>
  );
}

export default App;


5.3 解决跨域问题

为了让我们的前端能够成功调用后端API,我们需要解决跨域问题。回到我们的Flask应用(app.py),添加CORS支持:

  1. 首先,安装Flask-CORS:
 pip install flask-corspip install flask-cors


  1. 然后,修改app.py:
 from flask import Flask, request, jsonifyfrom flask import Flask, request, jsonify
from flask_cors import CORS
# ... 其他导入保持不变

app = Flask(__name__)
CORS(app)  # 启用CORS

# ... 其余代码保持不变


5.4 启动全栈应用

现在,我们的全栈应用已经准备就绪!让我们把它们都启动起来。

  1. 在一个终端中启动后端:
 python app.pypython app.py


  1. 在另一个终端中启动前端:
 cd qwen-web-uicd qwen-web-ui
npm start


现在,打开浏览器访问http://localhost:3000,你应该能看到一个漂亮的Web界面,可以输入提示并生成代码了!

6. Qwen的进阶技能:性能优化与高级功能

6.1 模型量化:让Qwen更轻盈

模型量化可以显著减少模型的大小和推理时间,同时保持相当的性能。让我们给Qwen来个"减肥计划":

 from transformers import AutoModelForCausalLM, AutoTokenizerfrom transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_path = "./Qwen2.5-Coder-7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)

# 加载模型并量化
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.float16)
model = model.quantize(8)  # 8位量化

# 保存量化后的模型
model.save_pretrained("./Qwen2.5-Coder-7B-quantized")


现在,你可以使用量化后的模型来减少内存使用和提高推理速度。

6.2 模型微调:让Qwen更懂你

如果你想让Qwen更好地理解你的特定需求,可以考虑对模型进行微调。这里是一个简单的微调示例:

 from transformers import Trainer, TrainingArgumentsfrom transformers import Trainer, TrainingArguments

# 准备你的数据集
train_dataset = ...  # 你的训练数据
eval_dataset = ...   # 你的评估数据

# 设置训练参数
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir="./logs",
)

# 初始化Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset
)

# 开始微调
trainer.train()

# 保存微调后的模型
trainer.save_model("./Qwen2.5-Coder-7B-finetuned")


6.3 批量处理:让Qwen一次处理多个任务

为了提高效率,我们可以让Qwen一次处理多个编程任务。修改我们的app.py:

 @app.route("/generate_code_batch", methods=["POST"])@app.route("/generate_code_batch", methods=["POST"])
@require_api_key
def generate_code_batch():
    data = request.json
    prompts = data.get("prompts", [])
    max_length = data.get("max_length", 150)
    temperature = data.get("temperature", 0.7)
    top_p = data.get("top_p", 0.9)
    
    inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True).to("cuda")
    with torch.no_grad():
        outputs = model.generate(
            inputs["input_ids"],
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            num_return_sequences=1
        )
    
    generated_codes = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
    return jsonify({"generated_codes": generated_codes})


7. Qwen的安全保镖:监控与安全措施

7.1 日志记录:记录Qwen的一举一动

让我们给Qwen配个私人秘书,记录她的工作日志:

 import loggingimport logging

logging.basicConfig(filename='qwen_api.log', level=logging.INFO)

@app.route("/generate_code", methods=["POST"])
@require_api_key
def generate_code():
    # ... 前面的代码保持不变 ...
    
    logging.info(f"Received prompt: {prompt}")
    # ... 生成代码的逻辑 ...
    logging.info(f"Generated code: {generated_code[:50]}...")
    
    return jsonify({"generated_code": generated_code})


7.2 性能监控:给Qwen做个体检

使用Prometheus和Grafana来监控Qwen的"健康状况":

 pip install prometheus-flask-exporterpip install prometheus-flask-exporter


然后在app.py中添加:

 from prometheus_flask_exporter import PrometheusMetricsfrom prometheus_flask_exporter import PrometheusMetrics

metrics = PrometheusMetrics(app)

# 添加自定义指标
generate_code_counter = metrics.counter(
    'generate_code_total', 'Number of code generation requests'
)

@app.route("/generate_code", methods=["POST"])
@require_api_key
@generate_code_counter
def generate_code():
    # ... 函数内容保持不变 ...


7.3 安全防护:给Qwen穿上防弹衣
  1. 使用HTTPS:在生产环境中,务必使用HTTPS来加密API通信。
  2. 定期更新API密钥:建立一个定期更新API密钥的机制。
  3. 输入验证:对所有输入进行严格的验证,以防止潜在的注入攻击。
  4. 限流:实现请求限流机制,以防止API被滥用。
 from flask_limiter import Limiterfrom flask_limiter import Limiter
from flask_limiter.util import get_remote_address

limiter = Limiter(
    app,
    key_func=get_remote_address,
    default_limits=["200 per day", "50 per hour"]
)

@app.route("/generate_code", methods=["POST"])
@require_api_key
@limiter.limit("10 per minute")
def generate_code():
    # ... 函数内容保持不变 ...


8. 结语:和Qwen一起编程的美好未来

恭喜你!你已经成功地把Qwen 2.5 Coder这个AI大神不仅请到了你的电脑上,还给她搭建了一个漂亮的网络舞台。从此以后,你就有了一个24小时不休息的编程助手。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### Qwen 2.5 Coder 配置使用指南 #### 在 IntelliJ IDEA 中配置 Qwen 2.5 Coder 为了在 IntelliJ IDEA 中成功集成并利用 Qwen 2.5 Coder 进行开发工作,需遵循一系列特定设置流程。首先,确保已安装最新版的 IntelliJ IDEA 和 Python 插件。 1. **克隆仓库** 使用 Git 将官方提供的 Qwen 2.5 Coder 模型库下载到本地环境: ```bash git clone https://www.modelscope.cn/qwen/Qwen2.5-Coder-7B-Instruct.git ``` 此命令会创建一个名为 `Qwen2.5-Coder-7B-Instruct` 的文件夹,其中包含了运行此模型所需的所有资源[^2]。 2. **项目导入** 打开 IntelliJ IDEA 并通过 "File -> Open..." 导入上述克隆下来的目录作为新项目。等待索引完成后继续下一步操作。 3. **Python 解释器配置** 安装适用于当前项目的虚拟环境,并将其设为默认解释器。这一步骤对于隔离依赖项至关重要,同时也便于管理不同版本间的兼容性题。 4. **依赖包安装** 利用 pip 工具来安装必要的 Python 库,这些库通常记录于 `requirements.txt` 文件内。可以通过终端执行如下指令完成自动部署过程: ```bash pip install -r requirements.txt ``` 5. **插件支持** 对于更高效的代码编写体验,建议激活额外的功能增强组件,比如 LSP (Language Server Protocol) 或者其他有助于提高生产力的相关工具。 6. **调试测试** 创建合适的断点以便更好地理解程序逻辑;同时也可以借助内置单元测试框架验证功能实现是否符合预期效果。 7. **API 调用示例** 下面给出一段简单的 Python 代码片段展示如何调用 Qwen 2.5 Coder API 来生成代码补全提示: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2.5-Coder-7B-Instruct") model = AutoModelForCausalLM.from_pretrained("qwen/Qwen2.5-Coder-7B-Instruct") input_text = "<your code snippet here>" inputs = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(inputs) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_code) ``` 8. **持续优化** 不断探索新的技巧和技术手段以提升工作效率,积极参社区交流分享经验心得,共同推动技术进步发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值