打造小红书运营神器:Dify与大语言模型联手实现全流程自动化

在这篇博客里,我们一起来基于 Dify 和 OpenAI 的 ChatGPT 大语言模型,打造生成小红书文案和封面图运营一条龙工作流。最终效果如下:

图片

使用者只需要描述主题、背景信息和语气风格,我们的工作流即可自动生成小红书标题、正文内容,以及封面图。Dify 工作流总览图如下:

图片

下面我们一步步来拆解工作流上的节点。

1. Start 收集必要的信息

图片

在添加变量界面设置变量名和显示名称。这里我们收集用户的基本主题需求、背景信息和正文语气。给到下一步的 ChatGPT 大语言模型,让它帮我们生成标题和正文。

图片

2. 生成小红书标题

图片

第二步根据用户的主题,生成一句简短且吸引人的小红书标题。

3. 生成小红书正文

在这里插入图片描述

第三步与第二步类似,我从网上搜了一个小红书爆款写作专家的 prompt,来生成小红书正文。这里需要把用户在第一步提供的信息,组装到 ChatGPT 的聊天上下文里。留意红色箭头的位置。

图片

4. 生成封面前言

图片

第四步为生成一段前言文字,用于绘制到封面图模板上。

5. 生成封面图

图片

封面图生成这里使用了 https://www.imgrender.net/ 这个服务,该服务每月提供一些免费接口调用额度,可以根据参数设置生成封面图。这里仅作演示用途,没有对封面图做过多的美术设计。大家也可以根据实际需要,替换为一些功能更强大的 AI 绘图服务,例如 https://getimg.ai/。

在这里插入图片描述

6. 提取封面图 URL

图片

第五步里接口返回的数据,需要用代码处理一下,变为 Dify 可以引用的变量。处理代码如截图所示。

7. 组装输出结果

图片

把前面步骤生成的标题、正文和封面图URL,组装到一起,作为最终结果输出。

8. End 结束

图片

至此,小红书运营一条龙工作流即构建完毕。

总结

今天我们学习了如何使用 Dify 的工作流配合大语言模型和外部图像接口来搭建一个内容生成应用。从配置初始参数开始,我们逐步通过大语言模型节点生成内容,再通过 HTTP 节点请求外部服务,最后用模版转换节点组装内容输出整体结果。整个过程不仅展示了工作流的强大功能,也让我们体验到了自动化处理的便捷性。

当然,Dify 工作流的强大功能远不止于此。它还提供了更多的节点和功能,等待我们去探索和应用。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### Dify 工作流的高级用法配置 Dify 是一种强大的工具,能够通过其灵活的工作流设计满足多种复杂需求。以下是关于如何利用 Dify 的分类器和其他模块来实现更高效的高级工作流配置。 #### 使用分类器提升效率 为了提高问题分类或其他数据处理任务的准确性,可以采用以下方法: - **训练定制化模型**:如果默认的分类器无法完全匹配业务场景,则可以通过提供标注好的数据集来自定义训练模型[^1]。这样可以使分类更加精准并适应特定领域的需求。 - **多层分类逻辑设置**:当面对复杂的多层次类别结构时,建议构建一个多阶段决策树式的分类流程。先进行粗粒度划分再逐步细化到具体子类目下。 #### 整合外部API增强功能性 除了内部组件外,还可以引入第三方服务扩展能力范围: - **调用视觉识别接口生成图片说明**:对于像创建社交媒体帖子这样的应用场景,在撰写文字内容的同时也可以借助计算机视觉技术自动生产配套图像素材描述[^2]。例如,使用AWS Rekognition 或 Google Vision API 来分析上传的照片特征,并据此补充文案细节。 ```python import boto3 def get_image_description(image_path): client = boto3.client('rekognition') with open(image_path, 'rb') as image_file: response = client.detect_labels(Image={'Bytes': image_file.read()}) labels = [label['Name'] for label in response['Labels']] return ', '.join(labels[:5]) # 返回前五个标签作为描述 image_desc = get_image_description('./example.jpg') print(f"Image Description: {image_desc}") ``` 上述脚本展示了如何利用 Amazon Rekognition 获取一张照片的主要对象列表,这些信息可用于丰富小红书文章的内容创作过程中。 #### 自动化营销材料制作 针对社交平台推广活动,可建立端到端解决方案简化日常操作负担: - **动态调整模板样式**:允许用户输入个性化参数比如品牌颜色偏好或者目标受众群体特性之后即时改变输出格式布局等外观属性。这意味着即使是在大规模批量生产的环境下也能保持一定程度上的独特性和针对性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值