大模型科普丨一文读懂AI大模型:概念、分类与应用场景

随着人工智能技术的飞速发展,AI大模型已成为当今科技领域的热门话题。这些拥有数十亿甚至数千亿个参数的庞然大物,正以前所未有的方式改变着我们的生活和工作。

1、什么是大模型?

想象一下,你有一个超级学霸朋友,他不仅读过图书馆里所有的书,还能瞬间总结知识点,甚至帮你写论文、设计PPT……这就是大模型!

大模型,全称“大规模预训练模型”,是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这类模型通过海量数据的训练,能够理解和生成人类语言,展现出接近人类的对话和推理能力。

通常说的大模型的“大”的特点体现在:参数数量庞大、训练数据量大、计算资源需求高

图片

训练大模型需要巨大的计算资源。以当前最先进的模型为例,其训练过程可能需要数百万张GPU显卡的计算能力,并消耗巨量的存储空间。这种"规模红利"使得大模型在多个领域展现出了超越传统算法的优势。

2、大模型的发展历程

大模型发展历经三个阶段:萌芽期(1950-2005)、沉淀期(2006-2019)和爆发期(2020-至今)。

萌芽期(1950-2005):以CNN(卷积神经网络)为代表的传统神经网络模型阶段。1956年,约翰·麦卡锡提出“人工智能”概念,1980年CNN雏形诞生,1998年LeNet-5诞生,为自然语言生成、计算机视觉等领域的深入研究奠定了基础。

沉淀期(2006-2019):以Transformer为代表的全新神经网络模型阶段。2013年Word2Vec诞生,2014年GAN诞生,2017年Transformer架构提出,2018年OpenAI发布GPT-1,2019年GPT-2发布。

爆发期(2020-至今):以GPT为代表的预训练大模型阶段。2020年OpenAI推出GPT-3,2022年ChatGPT横空出世,2023年GPT-4发布,2024年DeepSeek崛起,标志着人工智能进入“普惠”时代。

3、 大模型分类

大模型有很多种类别。通常所说的大模型,主要是指语言大模型(也叫大语言模型,简称LLM),它们专注于自然语言处理,展现了强大的文本理解和生成能力。按处理数据类型划分,除了语言大模型,还有视觉大模型和多模态大模型。此外,大模型的分类还涉及应用领域、功能等多个维度,不同的大模型,展现出了多样化的功能和性能。

图片

(仅供参考)

4、大模型应用实践

在自然语言处理(NLP)领域,大模型已经实现了突破性进展。文本生成、机器翻译、问答系统等任务的效果都显著提升。以ChatGPT为例,它不仅能够回答复杂问题,还能进行多轮对话,在教育、客服等领域展现出巨大的应用潜力。

图片

生成式人工智能的崛起为创意产业带来了革命性的变化。AI绘画工具如DALL-E和MidJourney,可以根据用户提供的文本描述生成高质量图像;AI音乐生成系统能够创作旋律优美的音乐作品;AI写作助手则可以帮助写作者提升内容质量。

在行业应用方面,大模型正在推动医疗、金融、教育等多个领域的智能化转型。智能客服系统通过大模型实现更自然的对话交互;医疗辅助诊断系统能够帮助医生提高诊断准确率;金融风险评估模型可以提供更精准的决策支持。

“大模型应用实践”表格,涵盖不同模态和应用场景(仅供参考):

在深入解析大模型的基本概念、细致分类以及广泛的应用实践之后,我们可以看到人工智能技术正引领着时代的变革。作为河北省首个全栈自主创新的计算中心,河北人工智能计算中心不仅积极推动人工智能技术的革新与发展,更将大模型的应用拓展至更广泛的领域。目前,该中心已成功部署并上线DeepSeek-R1-Distill系列模型,并携手合作伙伴,共同提供DeepSeek-V3和DeepSeek-R1满血版模型服务,为行业的智能化转型注入了新的活力与动力。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 使用PHPStudy搭建JavaSEC开发环境 #### 1. 准备工作 为了在 PHPStudy 中创建 JavaSEC 开发环境,需先安装并配置好 PHPStudy 平台。确保已下载最新版的 PHPStudy 软件包,并按照官方指南完成基本设置[^1]。 #### 2. 安装 JDK (Java Development Kit) 由于 Java 应用程序依赖于特定版本的 JVM 来运行,在 PHPStudy 的基础上构建 JavaSEC 环境前,必须单独安装适合目标系统的 JDK 版本。可以从 Oracle 或者 OpenJDK 获取稳定发行版,并遵循其文档中的说明来执行本地部署过程。 #### 3. 配置环境变量 成功安装 JDK 后,需要更新操作系统的 PATH 和 JAVA_HOME 变量指向新安装路径下的 bin 文件夹位置。这一步骤对于命令行工具能够识别 java 命令至关重要。 #### 4. 下载 Apache Tomcat Web Server Apache Tomcat 是广泛使用的 Servlet/JSP 容器之一,非常适合用来承载基于 Spring Framework 构建的应用服务端逻辑部分。前往官方网站获取适用于当前平台架构类型的二进制分发压缩文件,并将其解压到指定目录下保存备用。 #### 5. 设置项目结构导入依赖库 通过 IDE 如 IntelliJ IDEA 或 Eclipse 新建 Maven 工程作为起点;接着定义 pom.xml 描述符内必要的 GroupId, ArtifactId 字段以及引入 spring-boot-starter-parent POM 继承关系。随后添加 web starter module 支持 RESTful API 设计模式的同时也方便后续集成安全组件实现防护措施。 ```xml <dependencies> <!-- Other dependencies --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- Security related modules can be added here --> </dependencies> ``` #### 6. 将应用部署至Tomcat服务器 当所有准备工作完成后,可以考虑把打包好的 WAR 归档上传给 Tomcat 进行在线测试验证功能完整性。通常情况下只需简单复制粘贴 war 到 webapps 子文件夹即可触发自动展开机制启动应用程序实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值