一口气搞懂DeepSeek的知识蒸馏/微调/RAG

一 什么是模型蒸馏?

模型蒸馏是一种模型压缩和知识迁移的技术,旨在将一个大型、复杂且性能优异的教师模型中的知识传递给一个较小、计算效率更高的学生模型。(老师把复杂知识浓缩成简单方法教给学生,学生成为"小老师",能用更少的力气解决大部分问题) 通过蒸馏,学生模型可以在保留教师模型大部分性能的同时,显著减少计算成本和模型参数规模。(老师懂得多但贵,学生便宜但也懂老师的皮毛,也能用、性价比高!)

二 蒸馏/微调/RAG

蒸馏≈模型瘦身术,微调≈定向特训,RAG≈开外挂查资料。

蒸馏:就像学霸同学把老师讲题的方法偷偷记下来,回家教给基础差的同学。这样基础差的同学也能学会解类似的题,但不需要老师亲自教。用在AI里就是:把大模型(学霸)的知识简化后复制给小模型(普通学生),让小模型能在手机、平板这种低端设备上工作。

微调:假设数学课学得一般,但英语特别差的学生,专门花时间补英语。AI里就像给通用型AI(什么都会但不精通)猛补某个领域(比如医疗知识),让它变成该领域的专家。只需要用这个领域的少量资料训练就行。

RAG:考试时遇到不会做的题,偷偷翻开小抄(公司内部资料库),看完答案后再用自己的话组织答案。AI里就是:大模型回答问题的时候,先快速搜索公司自己积累的资料(比如产品手册、客户档案),再结合自己的知识回答问题。相当于给AI配了个"作弊神器",但本身大脑没变。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### RAG 架构概述 RAG(Retrieval-Augmented Generation)是一种融合信息检索与生成式语言模型的技术方案,旨在提高知识问答系统的精确度和效率[^4]。该方法的核心在于利用外部知识库来增强传统生成模型的能力,在面对特定查询时能够提供更加准确的回答。 #### 实现机制 当接收到一个问题请求时,系统首先会通过高效的索引结构从大规模数据库中检索出一系列可能相关的文档片段作为上下文补充材料。随后这些被选中的文本会被传递给预训练好的神经网络模型用于最终答案的合成处理过程。这种设计使得即使是在缺乏充分先验学习的情况下也能有效应对新领域内的问题求解任务。 ```python def rag_pipeline(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_answer = generate_response(retrieved_docs, query) return generated_answer ``` ### DeepSeek 搜索引擎解析 DeepSeek 是一款集成了多种先进技术的企业级解决方案平台,其核心竞争力体现在以下几个方面: - **大模型蒸馏**:通过对大型预训练模型的知识迁移至较小规模的目标架构上,从而实现在保持性能的同时降低资源消耗的目的; - **微调策略**:针对不同行业的特点定制化调整参数配置,使通用型算法更好地适应特殊应用场景的需求; - **RAG 技术集成**:借助上述提到的信息检索辅助生成框架进一步优化自然语言理解和响应质量[^1]; 此外,DeepSeek 还提供了便捷的数据导入接口和支持多源异构数据类型的特性,允许用户轻松构建个性化的智能服务环境。例如,支持直接上传文档、自动爬取在线资料等功能,并能实现自动化的内容分割与特征提取操作以便于后续加工使用[^2]。 ### 应用实例展示 在一个实际案例中,某金融机构采用了基于 RAG 的风险评估工具帮助信贷部门更高效地识别潜在违约客户。工作人员只需简单描述关注事项——比如“企业流动资金比例失衡”,系统就能迅速定位关联条款并给出详尽的风险预警报告,极大提高了工作效率和服务水平[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值