最近很多小伙伴后台问我,一直不明白表上的GPU算力数据大小到底是如何计算出来的?为什么还有FP32和FP16不一样的表述。
以下我们就来看看算力的计算方式,看看GPU算力是如何计算出来的,欢迎点赞和转发。
一、算力到底是个啥?
什么是算力?GPU算力通常以每秒浮点运算次数(FLOPS)来表示,反映了GPU在执行复杂计算任务时的效率。
简单来说,GPU算力就是GPU每秒钟能做多少数学题。当然这里的数学题不是加减乘除,而是更复杂的浮点运算(类似小数计算)和整数运算(类似整数统计)。
举个例子:
浮点运算:GPU做科学计算(如天气预报)或AI训练时,就像解一道复杂的微积分题,速度越快越好。
整数运算:AI推理(如图像识别)时,GPU需要快速统计像素点数量或判断分类结果。GPU上的整数计算能够提供更高的性能和效率,特别是在处理大规模数据和复杂算法时。
二、算力计算公式
在解释算力公式之前,先说明几个关键名词TFLOPS(万亿次浮点运算每秒)、TOPS(万亿次操作每秒)
TFLOPS:中文翻译“万亿次浮点运算每秒”,浮点运算就是计算机做小数运算的一种方式,在很多复杂的计算任务中,比如科学研究、图形渲染、人工智能训练等,都需要进行大量的小数运算。
TFLOPS 这个指标就是用来衡量计算机硬件(像 CPU、GPU 等)在一秒钟内能够完成多少万亿次这样的浮点运算。这个数值越高,说明硬件的计算能力越强,能更快地完成复杂的计算任务。所以,TFLOPS的高低直接决定了处理器的计算效率和速度。
TOPS:中文翻译“ “万亿次操作每秒”。这里的 “操作” 可以是各种类型的计算操作,不仅仅是浮点运算,还包括整数运算、逻辑运算等其他类型的运算。特别适合在人工智能领域,因为许多人工智能任务,如推理和图像识别,依赖于高效的整数运算,TOPS的高低反映了处理器在处理这些任务时的能力。
一句话介绍两者区别:TTFLOPS关注浮点运算,适用于需要高精度计算的场景;而TOPS关注整数或定点数运算,更适合于低精度、高效率的人工智能任务。此外,TFLOPS通常用于GPU性能评估,而TOPS则更多地用于NPU或专用AI芯片的性能评估。
下面我们来看下GPU算力的核心公式是:
算力(FLOPS)= CUDA核心数 × 加速频率 × 每核心单个周期浮点计算系数。
CUDA核心数:指的是每个GPU中的CUDA(Compute Unified Device Architecture)核心数量,它反映了GPU的计算单元数量,是决定算力的重要因素之一。
核心时钟频率:CUDA核心的运行速度,通常以GHz为单位。频率越高,每秒能执行的运算次数越多。
每核心单个周期浮点计算系数:决定了每个核心在每个时钟周期内能执行的浮点运算次数,是评估GPU算力的关键参数。
举个例子:我们以NVIDIA A100 GPU为例,我们可以通过以下步骤计算其理论峰值算力:
CUDA核心数:6912个(即108个SM,每个SM包含64个CUDA核心)。
核心运行频率:1.41GHz。
每核心单个周期浮点计算系数:2(考虑到Tensor Core的融合乘加指令,一次指令执行会计算两次)。
应用公式:A100的算力(FP32单精度)= CUDA核心数 × 加速频率 × 每核心单个周期浮点计算系数 = 6912 × 1.41 × 2 = 19491.84 GFLOPS ≈ 19.5 TFLOPS。
一般GPU算力的时候,除了基于理论峰值计算能力的评估方法外,还可以通过峰值计算法来估算GPU的算力。
该方法基于GPU的时钟周期内指令执行数(F_clk)、运行频率(F_req)以及SM数量(N_SM)来计算。
计算公式:峰值算力 = F_clk × F_req × N_SM。
应用示例(以NVIDIA A100为例):
NVIDIA A100单精度FP32指令吞吐为64 FLOPS/Cycle。
核心运行频率为1.41GHz。
SM数量为108。
考虑到Tensor Core的融合乘加指令,一次指令执行会计算两次。
A100的峰值算力 = 64 FLOPS/Cycle × 1.41GHz × 108 SM × 2 = 19.491 TFLOPS ≈ 19.5 TFLOPS。
三、不同架构的算力差异
NVIDIA GPU的架构升级就像手机芯片的更新换代,每一代都会优化计算效率:
1.旧架构(Kepler/Turing)的代表型号有Titan V(Kepler)、RTX 2080 Ti(Turing)
这些产品的特点:旧架构的GPU支持单精度(FP32)算力,适合传统图形渲染和科学计算。
2. 新架构(Ampere/Hopper)的代表型号为A100(Ampere)、H100(Hopper)
它们的特点:新架构的GPU采用FP32/FP16混合精度,能够同时支持高精度训练和低精度推理,效率翻倍。
四、显存带宽的“瓶颈”
算力再高,如果数据传输跟不上,就像高速公路上车再多但车道不够。显存带宽决定了GPU处理数据的速度。
例如RTX 4090的1008 GB/s带宽 → 相当于10辆卡车同时运送数据。
A100的带宽2039 GB/s → 相当于20辆卡车同时运送数据。
五、实际应用中的注意事项
在评估GPU算力时,除了考虑理论峰值计算能力和峰值计算法外,还需要注意以下几点:
算力不等于实际性能:GPU的实际应用性能可能受到多种因素的影响,如算法的并行性、内存带宽、内存访问模式等。因此,在评估GPU算力时,需要结合实际应用场景进行测试。同时软件优化(如CUDA编程)和功耗对GPU选择也是飞外重要重要。
技术更新:随着技术的不断发展,GPU的架构和性能也在不断提升。因此,在评估GPU算力时,需要关注最新的技术动态和硬件规格。
多卡互联:通过NVLink或SLI,多块GPU可以协同工作,算力叠加。
总结
GPU算力就像汽车的马力,决定它能跑多快。但实际体验还取决于显存带宽(公路宽度)、软件优化(驾驶技术)等多方面因素。选GPU时,要根据任务需求(游戏、训练、推理)和预算综合考量。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓