笔者的数分老师前几节课就讲了实数的完备性公理,虽然确实听懂了,但是确实也有点难理解,所以索性全部记下来,便于日后复盘,也能帮到有需要的人。
实数的完备性公理:R中任何非空有上界的集合必有上确界。
补充一下,数分中上确界表示为sup,下确界表示为inf
以下是完备性公理的一些应用:
(1)R中任何非空有下界的集合必有下确界。
这和完备性公理其实只是一字之差,证明过程也基本一样。
可能会有读者觉得这和确界原理也有点像,确实,确界原理还有数列的单调有界定理以及其给出的数列的致密性定理和柯西收敛准则,都以不同的方式反映了实数的完备性。
(2)阿基米德原理:x,y∈R,x>0,
n ∈Z*,s.t. nx>y
实际上阿基米德原理有不同的解释,比如欧几里得解释下的阿基米德原理是:对任何a,b∈R,若b>a>0,则存在正整数n,使得na>b
从几何角度理解,可以看作拿一条短线段不断连续截取长线段,总会在n次以后全部截取完长线段并多出一截。
然后来利用实数的完备性公理证明一下阿基米德原理:
运用的方法是反证法。
证明:记A={nx|n∈Z*}
反证:假设上述结论不成立,n∈Z*有 nx≤y
于是y是A的上界,A≠0
故A应有上确界,设为M,M=supA
由于x>0,故M - x<M
由M的定义可得M-x不是A的上界
故nx∈A s.t. nx>M-x
于是(n+1)x>M 与 M是上确界矛盾
所以命题成立
(3) ε∈R,ε>0,
n∈Z*,s.t.,
<ε
这条结论其实是阿基米德原理的推论。
(4)若x≥0,对ε>0,x≤ε,则x=0
(5)对x∈R,存在唯一的整数k,s.t.,k≤ x<k+1
证明:
设x>0,则 n0∈Z*,s.t. ,n0=n0*1>x
故集合A={ n∈Z | n ≤ x }有上界n0,非空(包含0)
于是有上确界 supA=k
则对,
,
不是A的上界,即
n ∈ A,s.t.
<n ≤ k ,可以推得k≤x
/若x≥k+1,则k+1∈A 且 k+1>k 与 k 是A的上界矛盾,所以x<k+1
所以对x∈R,存在唯一的整数k,s.t.,k≤ x<k+1
(6)若x,y∈R,则 p∈Q s.t. x<p<y (实数x与y之间一定有有理数)
证明:x<y → y - x >0 → n∈Z* , s.t. ,n(y - x) >1 → x+
< y
设P为,n∈Z* → x<
≤ x+
< y → nx<m ≤ nx+1 → m - 1 ≤ nx ≤ m
由(5), m ∈ Z,s.t. m - 1 ≤ nx ≤ m → x<
≤ x+
< y,证毕
注:(6) → x∈R,
,
p∈Q s.t. p∈(x -
,x +
),即Q在R中稠密。(实数的稠密性)
(7)对 ∈R,x > 0 和 n ∈ Z*,存在唯一的 y ∈ R,y>0,s.t.
(记 y ==
)
证明:
唯一性:若y1,y2 > 0,,
,则
存在性:令E={ t∈R | },则 0 ∈ E,且 1+x 是 E 的上界,故 E 有上确界,supE = y > 0
接下来的一部分实在不好码出,只好用手写替代。
以上就是一些有关实数完备性的一些应用与证明内容,有时间后续复盘的时候可能会做更详细的解释。