相机的**内参矩阵**(即 **Intrinsic Camera Matrix**)。这个矩阵包含了相机的一些内部参数,这些参数用来将3D世界中的点投影到2D图像平面上。
### 相机内参矩阵(K):
这个矩阵的形式如下:
\[
K = \begin{bmatrix}
f_x & 0 & c_x \\
0 & f_y & c_y \\
0 & 0 & 1
\end{bmatrix}
\]
其中:
- **f_x** 和 **f_y**:这是相机在 x 轴和 y 轴上的焦距(以像素为单位)。
- **c_x** 和 **c_y**:这是相机的主点坐标(图像的中心点坐标,通常也是以像素为单位)。
- 第三行一般固定为 `[0 0 1]`,保持矩阵的齐次性。
### 例如:
\[
K = \begin{bmatrix}
603.74 & 0 & 644.14 \\
0 & 603.54 & 364.95 \\
0 & 0 & 1
\end{bmatrix}
\]
- **f_x = 603.74** 像素
- **f_y = 603.54** 像素
- **c_x = 644.14** 像素
- **c_y = 364.95** 像素
### 这些参数的含义:
1. **焦距**(**f_x** 和 **f_y**):这表示相机在 x 轴和 y 轴上的“放大倍数”或“视角”。从你的数据来看,x 和 y 轴上的焦距非常接近,说明相机在水平方向和竖直方向的视角是均匀的。
2. **主点**(**c_x** 和 **c_y**):这是相机图像传感器的中心点坐标。通常,它并不会完全位于图像的几何中心,而会有轻微的偏移。你提供的数值表明主点略微偏离图像中心,这在大多数相机中是常见的现象。
### 如何查看相机的这些参数:
以 **Intel RealSense SDK** 为例子,获取 D435 相机的内参矩阵。下面是一个使用 Python 和 `pyrealsense2` 库的示例代码:
```python
import pyrealsense2 as rs
pipeline = rs.pipeline()
# 启动相机流
pipeline.start()
# 获取流的配置文件和内参
profile = pipeline.get_active_profile()
intrinsics = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
# 打印内参
print("fx:", intrinsics.fx)
print("fy:", intrinsics.fy)
print("cx:", intrinsics.ppx)
print("cy:", intrinsics.ppy)
pipeline.stop()
```
这段代码将输出你的相机的 **焦距**(`fx`, `fy`)和 **主点坐标**(`cx`, `cy`),这些信息对应你提供的内参矩阵中的值。